1) contract data requirement list
压缩数据请求表
2) Data request
数据请求
1.
This paper analyzes the characteristics of the data request access patterns in RAID systems, and presents a new smart prefetching and buffer scheduling algorithm, which can automatically change its prefetching policy and buffer scheduling according to different applications.
本文分析了RAID系统的多应用环境数据请求的存储模式的特点 ,提出了能根据应用环境的不同而自动改变预取策略的智能预取算法以及缓存调度算法。
3) RBS Request BlockS
请求数据块
4) Requesting Data Rate
数据请求率
6) Data Compression
数据压缩
1.
A study of ECG data compression based on wavelet neural network;
基于小波神经网络的心电数据压缩研究
2.
Power system fault recording data compression based on IWT and SPIHT coding;
基于整数小波变换和SPIHT编码的录波数据压缩算法
3.
Application of data compression based on AIS to the extraction of landslide anomaly;
基于人工免疫算法的数据压缩技术在滑坡异常提取中的应用研究
补充资料:压缩
压缩
contraction
压缩!阴。.比佣,c~j,压缩算子(contraCtingoperator.①ntractive operator) Hilbert空间H到Hilbert空间刀的一个有界线性映射T,满足升T}热1当H=11,时,个压缩算子T称为宇舍护尊的(con,pletely non一“ni‘a理),指它在任何【补注】算子T的一个约化子空间(redudng sub-印ace)是一个闭子空间K,使得有一个余K‘,即H=K田K,,而K与K‘在T之下都不变,即T(K)C=K,T(K‘)C=K‘.非零的T约化子空间上不是一个酉算子.例如,单侧移位(对比于双侧移位,后者是酉的)是这样的算子联系于H上的每个压缩算子T,有唯一的到T约化子空间中的正交分解H=鱿〕①Hl,使得几二月。了.是酉的,T,=TI。是完全非酉的·了’一T。①不称为T的粤尽兮解(以noniol decomlx巧itlon). H上给定的压缩算子的一个膨胀(d ilation)是一作用于某个更大的比lbert空间K二HI二的有界算子B,使得T“二尸月“,。=1、2、…,这里P是K到H上的正交射影.巧lbert空间H中的每个压缩算子有在某个空间K“H上的酉膨胀U,此外,在如下的意义下它是极小的,K是毛U”H}众。的闭线性张成空间(sz6ke-falvi一Na罗宇浮(s Z6kefalvi一Na留‘heorem))·通过谱理论定义的极小酉膨胀及其函数,允许人们对于压缩箕子构造一种函数演算.这本质上已对开单位圆盘D中的有界解析函数(Ha吻空间H“、)做到了.定义完全非酉压缩算子T属于C。类,如果有一个函数u任H£,。(泪幸0,使得u(T)二0.C。类包含于压缩算子T的C,类之中(指当n,美时,尹一。,厂陀一川.对每个C‘,类的压缩算子,有所谓俘性‘甲攀(m,n,ma‘爪nc‘,on)”了以)(尺},是一个内函数u任H戈,在D中}u(劝}簇1,在D的边界上几乎处处有}州c“)}=l)使得m:.‘川二O并且川:(幻是所有其他的具有同样性质的内函数的因子‘一个压缩算子T的极小函数m:(劝在D中的零l奴集,再与沿弧其上m了(又)可作解析延拓的弧的并在单位圆周中的余集。起,与谱试钧相同.口、类压缩算一子极小函数的概念,允许人们把这类压缩算子的函数演算推广到D中某些亚纯函数. 不仅对于单个的压缩算子也对于离散的压缩算户半群{T”}(n二0,l,一)以及连续的压缩算子半群{j’(5)}(0毛s(刃),己经得到了关于酉膨胀的定理. 如同对于二耗散算子(dissipatlve()详rator),也对压缩算子,构造了一种特征算子值函数的理论及基l此的一个函数模型,由此可研究压缩算一F的构造及谱、极小函数与特征函数之间的关系(见}1]).由〔ayley变换 ,1一二(I+了’)(I丁)l任。;t了)一个压缩算子T与一个极大的增生算子」‘即A使得,A是一个极大的耗散算子)有关.在此基础上.可建扭对称算子成的耗散扩一张B。(相应地,保守算子:斌、的Philips耗散扩张i双,)的理论. 对压缩算子已发展了相似性,拟相似性及单胞性的理论,压缩算子的理论紧密相关于平稳随机过程的预报理论及散射理论.特别地,Lax一Phili详图式(!2])可看作CO。类压缩算子的S泌kefalvi一Nagy一价)ias理论的连续相似.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条