1) geometric density function
几何密度函数
2) geometric function
几何函数
1.
In order to effectively analyze the crack propagation in asphalt pavements, three geometric functions F(a/b) for analysis of bottom cracks in asphalt layers are yielded by fitting some discrete values of crack lengths.
为了更好分析沥青路面的裂缝开裂问题 ,以裂缝面受均匀拉应力为参考荷载 ,利用有限元方法计算出不同沥青层底裂缝长度的应力强度因子 ,从而得到不同裂缝长度的离散几何函数值 ,再根据这些离散几何函数值 ,为沥青层底裂缝拟合出了 3个几何函数F(a/b)。
3) probability density function
几率密度函数
1.
The probability density function method coupled with the statistical moment method is used to predict the turbulent jet diffusion flame structure of methane/air.
利用几率密度函数方法求解标量场及用统计矩方法求解流场相结合的手段,对甲烷/空气湍流射流扩散火焰结构进行了计算模拟,其中,考虑了从简化到详细的三种不同规模的甲烷氧化反应动力学机理。
2.
Based on the probability density functions of electron diffraction and Monte Carlo method,this paper demonstrates the dynamic and stochastic process of the two-slit diffraction of electron by means of programming and data visualization of Matlab.
依据电子衍射的几率密度函数,运用蒙特卡罗随机模拟方法,借助Matlab软件的编程及数据可视化功能,实现电子双缝衍射动态随机过程的演示。
4) hypergeometric function
超几何函数
1.
Pascal matrix type and the hypergeometric function;
Pascal矩阵类与超几何函数
2.
Given the hypergeometric function F(a , b; c; z) and F1 (z) = zF(a , b; c; z) , we determine conditions on a, b, c, A, B I λ, to guarantee that (1 - )F1 (z) + zF1 (z) (30) will be in the class T(X, A, B).
给定 F1(z)=zF(a,b;c;z),这里F(a,b;c;z)是超几何函数,我们对a,b,c,A;B,λ,μ确定条件,使得函数(1-μ)F1(z)+ μzF1’(z)(μ ≥ 0)属于类 T(λ,A,B)。
3.
In this paper,we give the holomorphic automorphism groups and,compute the Bergman kernel functions represented by hypergeometric functions when the parameters are positive integers and the Bergman kernel functions in explicit formulas when one of the parameters is positive real number but the inverses of the other numbers are positive integers on the generalized Hua domains.
给出了 4类广义华罗庚域的全纯自同构群及其当参数都是正整数的Bergman核函数的超几何函数表达式和当参数之一为正实数而其余参数的倒数为正整数的Bergman核函数的显表达式 。
5) geometrically convex function
几何凸函数
1.
In this paper,the author obtains several important results for the geometrically convex function by first pointing out a new relation between geometrically convex function and Sgeometrically convex function,proving some properties of geometrically convex function in image and establishing a sufficient and necessary condition of geometrically convex function.
通过对几何函数有关定义和性质的深入研究,得到了几个重要结果,其中有对称对数凸集上的对称几何凸函数是S几何凸函数、几何凸函数的上图像是对数凸集、一维几何凸函数的一个重要条件。
2.
This paper improves the definition of S-geometrically convex function.
本文首先对现有的S-几何凸函数定义进行了拓广,定义了广义S-几何凸函数,得到广义S-几何凸函数的判别定理,并依此推广一个已知不等式。
3.
By using some properties of geometrically convex function,this paper gives two new results of the Mills′ ratio Rx=ex22∫+∞xe-t22dt, when x>2.
利用几何凸函数的性质,给出关于Mill比R x=ex22∫x+∞e-t22dt的两个新结果。
6) geometrically convex functions
几何凸函数
1.
An inequality for quasi-arithmetic symmetrical mean of geometrically convex functions is established, and inequalities presented by article [1] are unified and generalized.
建立了几何凸函数的对称拟算术平均不等式,对文献[1]提出的不等式进行了推广统一;引进加权对数幂平均的概念,建立起其与双参数平均之间的关系,得到加权对数平均不等式,从而确定了几何凸函数的几何平均、算术平均的上界的大小关系;最后,提出了几何凸函数的对称拟算术平均不等式的推广问题。
补充资料:几何
①〈书〉多少:价值~?ㄧ曾~时。②几何学的简称。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条