1) absolutely-convergence integral
绝对收敛积分
2) non-absolutely convergent integral
非绝对收敛积分
3) absolutely convergence
绝对收敛
1.
The present paper investigates the absolutely convergence for Fourier-Laplace series of the functions belonging to some smoothing functions class given on the unit sphere and defined k-th order difference with step t along a geodesic emanating from μ∈Ω n,averaged ov.
经典 Fourier分析中一个熟知而重要的结果是 Lipα类上的 Fourier级数是绝对收敛的 。
2.
A strict proof of the formulas of the convergence real part,absolutely convergence part and uniform convergence real part for the exponential series has been given.
给出了指数级数收敛实部、绝对收敛实部及一致收敛实部公式的严格证明。
3.
Making use of the result, we can directly distinguish whether alternate series are convergence or not, absolutely convergence or conditioned convergence.
给出了交错级数的一个判别法,应用此判别法可直接判别交错级数是否收敛,以及收敛时是绝对收敛还是条件收敛。
4) absolute convergence
绝对收敛
1.
Subseries convergence and absolute convergence in locally convex spaces;
局部凸空间中的子级数收敛与绝对收敛
2.
The concept of absolute convergence is generalized.
拓展了级数绝对收敛的概念。
3.
Using the comparison test,ratio test,or root value test,and their limit forms to judge the convergence and divergence of ∑∞n=1|un|,we can get if the series ∑∞n=1un is absolute convergence.
对于级数∑∞n=1un是否绝对收敛,我们可以用比较判别法、比值或根值判别法及它们的极限形式对∑∞n=1|un|的敛散性来进行判定,文献[1]给出了用导数判别级数绝对收敛的方法,本文对文献[1]的结论做了进一步的推广,给出了利用高阶导数判定级数绝对收敛的方法。
5) absolute convergent
绝对收敛
1.
Some valuable properties of the set of the sum of absolute convergent series are obtained.
主要讨论了收敛级数的子级数和集的结构,得到了绝对收敛的子级数和集的一些有价值的性质,并首次给出了它的构造性证明。
6) absolutely convergent
绝对收敛
1.
that in the definition ofexpectation condition that is absolutely convergent can be changed to the convergence of.
本文证明了在目前的概率教科书中,连续型随机变量的数学期望定义中的条件“积分绝对收敛”可以改为“积分收敛”。
2.
It is proved that p -normed vector space X is complete if and only if absolutely convergent series is convergent,and that in p -Banach spaces,abstract function s bounded variation is equivalent with its p -weakly bounded variation if and only if series s absolutely convergent is equivalent with its p -weakly absolufely convergent.
证明了赋p-范向量空间X完备当且仅当其中的绝对收敛级数必收敛;取值于p-Banach空间X的抽象函数之囿变与p-弱囿变等价当且仅当X中的级数之绝对收敛与p-弱绝对敛等
补充资料:绝对
【绝对】
绝了相对,叫做“绝对”,与绝待同义。
绝了相对,叫做“绝对”,与绝待同义。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条