说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 中心阶乘矩
1)  central factorial moment
中心阶乘矩
2)  central factorial numbers
中心阶乘数
1.
A proof of inverse relations of central factorial numbers;
中心阶乘数反演关系的证明(英文)
3)  second-order central moment
二阶中心矩
4)  High order central moment
高阶中心矩
1.
In this paper,Introduces the stirling numbers of the second kind,S(p,k) of combinations,given general expressions for the high order original moment,the high order central moment and the high order cumulant with the characters of S(p,k).
本文引入了组合数学中第二类stirling数S(n,k),利用第二类stirling数S(n,k)的性质给出了几何分布的高阶原点矩、高阶中心矩及高阶半不变量这三种高阶矩的直接表达式,并尝试给出其简化形式。
5)  third central moment
三阶中心矩
1.
Image edge is detected by the third central moment of its immediate pixel neighborhood.
利用像素邻域的三阶中心矩,可以提取图像边界。
6)  K-order Central Moment
k阶中心矩
补充资料:中心


中心
centre

  中心【叨饥;ue.Tp] 二阶常微分方程自治系统(*》的轨道在奇点x。的邻域内的一种图形,这里 义二.f(x).*=(x、,x:),厂二G仁RZ、R“(*)f〔C(G),而G是一个唯一性的区域.这种图形的特征如下:存在一个凡的邻域U,使得所有在U\}凡{内开始的系统的轨道是围绕凡的闭曲线,点x0本身也称为中心.图中点O就是中心.随着t的增加沿轨道的运动可按顺时针或反时针方向进行(如图中箭头所示).中心是几田卿。B稳定的(但不是渐近稳定的).它的Pom。叮e指数为1.价 例如,当f(x)=A(x一x0)时,点x。是系统(*)的中心,其中A是具有一对纯虚数本征值的常数矩阵.与线性二阶系统情况下出现的其他类型的简单静止点(鞍点(sadd】e),结点帅以允)或焦点伍尤l‘))相反,中心型的点x。,一般来说,在线性系统右边扰动情况下不保持为中心,不管相对于Ilx一x。11的扰动阶如何小和它们的平滑性如何.它可转变为焦点(稳定的或不稳定的)或中心焦点(见中心和焦点问题(。即。℃andfc‘璐脚卜lem”.对于C’类(f〔C’(G))非线性系统(*),一个静止点凡在矩阵A=f‘(x。)有两个零本征值情况下也可以是中心.【补注】关于准确的拓扑的定义见【AI],p.71.
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条