1) unitary multiplet
幺正多重态
2) unitary decuplet
幺正十重态
3) regular multiplet
正常多重态
4) unitary transformation
幺正变换
1.
By utilizing the unitary transformation such as the rotational transformation in Schwinger angular momentum representation,Bogoliubov transformation and the squeezed transformation,the two-body interacting Hamiltonian in the form of H∧_k=A_1a~+_ka_k+A_2b~+_kb_k+(Ba~+_kb~+_k+B~*a_kb_k)+(Ca~+_kb_k+C~*b~+_ka_k)is diagonalized.
利用Schwinger角动量表象的转动变换,玻戈留玻夫变换,压缩变换等幺正变换,对∧Hk=A1ak+ak+A2bk+bk+(Bak+bk++B*akbk)+(Cak+bk+C*bk+ak)形式磁有序物质的二体耦合哈密顿量进行了对角化。
2.
The Hamiltonian of the system was diagonalized by unitary transformation to obtain the eigenenergy spectra of the circuit.
通过幺正变换将系统的哈密顿量对角化,给出体系的本征能谱。
3.
We find that when the channels are nonmaximally (entangled) states by introducing an ancillary qubit and constructing an unitary transformation properly,teleportation of two-particle entangled state can be implemented with certain probability.
发现在使用非最大纠缠态作为量子通道时,通过引进一个辅助粒子,并构造一个幺正变换矩阵,即可以一定的几率完成二粒子纠缠态的隐形传输。
5) unitary operation
幺正操作
1.
The former receivers randomly perform an arbitrary unitary operation on each of the particles, which is equivalent to eneryption of the particle with a random key and ensures the security of the present pro- tocol.
先前的接收者在每个粒子上随机地执行一个任意的幺正操作,相当于用一个随机的密钥加密粒子,确保了这个方案的安全性。
6) unitary matrix
幺正矩阵
1.
In this paper,we presented a succinct method to obtain the unitary matrix in the representation transformation by the theorem form,gave the reasonable demonstration,and simultaneously confirmed the theorem accuracy by a concrete example.
以定理的形式给出了表象变换中获得幺正矩阵的一种简洁方法,并给予了合理的证明,同时结合具体实例验证了定理的正确性。
2.
Constructing a unitary matrix for transformation of coordinates by means of quadratic form theory,the Hamiltonian of the 3D coordinate-momentum coupling harmonic oscillator is transformed into diagonalmatrix,it not only offer a general mathematic method for solving this kind of problems,but also have an active effect upon upgrading students ability to solve physics problems by mathematical theory.
利用二次型理论构造一个幺正矩阵进行表象变换,将|x〉表象中的三模坐标-动量耦合量子谐振子体系的哈密顿量对角化,这不仅提供了一种解决该类问题的一般数学方法,同时对培养和提升学生运用数学工具解决复杂物理问题的能力也具有积极的指导作用。
补充资料:幺正变换
见表象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条