1) geodesic circle of a surface
曲面上的测地圆
3) elliptic curves over Zn
Zn上的椭圆曲线
4) curvatures on surface
曲面上的曲率
5) curves on space surfaces
曲面上的曲线
1.
The theory of curves on space surfaces is an important part of the theory of elementary differential geometry.
空间曲面上的曲线论是初等微分几何的重要部分。
6) net of curves on a surface
曲面上的曲线网
补充资料:超椭圆曲线
超椭圆曲线
hyper-elliptic curve
超椭回曲线【hy脚一面吵~:r.皿p”。皿T。,eeKa,KP二a,] 仿射曲线尹“f(x)的非奇异射影模型,这里f(x)是一个没有重根的次数为奇数n的多项式(偶次数2k的情形可归结为奇次数2火一1的情形).超椭圆曲线的函数域(超椭圆函数域)是有理函数域的二次扩张;从这个意义上讲它是除了有理函数域之外的最简单的代数函数域.超椭圆曲线由二次除子的一维线性系川的存在性所判定,这样的线性系定义了一个该曲线到射影直线上的二次态射.上述超椭圆曲线的亏格为切一1)/2,因此对不同的奇数。这些超椭圆曲线不双有理等价.当n二l时是射影直线;n=3时是椭圆曲线.按惯例亏格O和l的曲线不称为超椭圆曲线.在亏格g>1的超椭圆曲线上正则微分形式之比生成一个亏格O的子域;这一性质完全刻画了超椭圆曲线,【补注】正文中给出的定义(第一句话)仅在特征不为2时成立.一般情形超椭圆曲线可定义为有理曲线(扭由naJ clln尼)的一个二重覆叠(亦见,.曲面(Cove-力飞s班face)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条