1) Go over a suspect
对可疑分子搜身
3) Rub down a suspect
对嫌疑犯进行搜身
4) bi-search
对分搜索
1.
A novel routing lookup method based on BSPR(Bi-search on Prefix Range) is provided and implemented in this paper,which uses 5-step TCAMs pipelining based on bi-search on prefix range.
本文提出并实现了一种独特的对前缀范围对分搜索的IPv4五步TCAM流水查找方法。
2.
Though traditional bi-search on prefix-length algorithm has better memory accesses performance, it does not support incremental entry update because it uses hash for an exact match.
与已有对前缀长度的搜索不同 ,该文提出一种独特的基于前缀范围对分搜索的路由查找算法 ,并以多步TCAM实现流水查找 。
5) body search
搜身 搜身
6) pairwise separability
对子态可分性
1.
In this paper the pairwise separability of a preference is presented and studied.
本文提出了消费者偏好的对子态可分性概念,并用来揭示一般选择集合上偏好的效用函数表示的特征,证明了偏好关系可用效用函数表示的充分必要条件是该偏好具有对子态可分性和可数满足性,还证明了偏好关系具有长直线w1—表示的充分必要条件是该偏好具有对子态可分性。
补充资料:Weierstrass条件(对变分极值的)
Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun
与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条