1) quaternion ring
四元数环
1.
In this paper, some characterizations of rings R for which the quaternion ring Q(R) is a diuision ring have been given.
本文给出了交换环上的四元数环是除环的两个充要条件;在环范畴的子范畴间定义了四元数函子,并证明了它是一个正合函子,同时讨论了环类的遗传性,同态闭性在四元数函子下的变化情况。
2) ring of integral quaternions
四元整数环
1.
In this paper,based on the analysis of quaternions,ring of integral quaternions and congruences classes group of int.
在目前的网络安全技术中 ,通常使用的是模n既约有理整数同余类群 ,在此 ,通过对四元数体、四元整数环、模n既约四元整数同余类群等数学概念及性质的研究 ,得出这样一个结论 :模n四元整数同余类群具有RSA密码体制所要求的特殊性
3) Porphyridyum cruentum
复四元数环
4) Hamilton's quaternions ring
Hamilton四元数环
5) quaternary division ring
四元数除环
1.
Let Ω_F be the quaternary division ring imbedded by the ordered field F.
设F为有序域,Ω_F是由F扩充而得的四元数除环。
6) generalized quaternion ring
义四元数环
补充资料:四元数
四元数 quaternions 数的一种。1843年英国数学家W.R.哈密顿为解决建立三维复数空间的问题,把复数x+iy作为一对有序偶的实数来研究,并定义了一套运算规则,使虚数i在复数运算中有了明确的意义。为此,他创立了有4个分量的新数,即t+xi+yj+zk,他把这个数称之为四元数。其中t为四元数的数量部分,也称纯量部分,xi+yj+zk为向量部分,式中i、j、k满足: i2=j2=k2=-1,ij=k,ji=-k,ki=j,ik=-j,jk=i,kj=-i。 四元数的建立为向量代数和向量分析奠定了基础,四元数系又构成了以实数域为系数域的有限维可除代数,从而促进了代数学的发展。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条