说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> β二项式模式
1)  betabinomial models
β二项式模式
2)  binomial model
二项式模型
1.
At the same time,the Binomial Model which is related option pricing is introduced in a brief way.
介绍了著名的布莱克_斯科尔斯期权定价模型的产生、发展、应用 ,基于这一模型进行了实例检验 ,同时简单介绍了相关的二项式模
3)  Second order polynomial model
二级多项式模型
4)  binomial probability model
二项式概率模型
1.
Based on that,A binomial probability model in ter.
在此基础上,建立了“N-M”调度策略的二项式概率模型,并在不同的参数条件下对Monte Carlo仿真任务的性能进行了测试和分析,结果验证了设计方案的有效性。
5)  quadratic polynomial model
二次多项式模型
1.
We analyze SCB and its prediction with quadratic polynomial model,grey model,and linear model respectiv.
本文分别利用二次多项式模型、灰色模型和线性模型进行了大量卫星钟差资料分析,总结了它们的优点与不足,为GPS卫星钟差预报研究提供借鉴与参考。
2.
The optimal proportion of diesel/bio-diesel/ethanol was researched with uniform design,the quadratic polynomial model which took the NOx emission,the specific fuel consumption,the smoke value as evaluation indexes was established,and the optimal proportion was acquired based on the partial optimization and comprehensive optimization of evaluation indexes.
运用均匀设计研究柴油/生物柴油/乙醇混合燃料的最佳掺烧比,建立以NOx、燃油消耗率、烟度为评价指标的二次多项式模型,确定基于评价指标单独优化及综合优化的最佳掺烧比。
6)  two-mode field in binomial state
双模二项式光场
补充资料:单一时期二项式模型


单一时期二项式模型


  【单一时期二项式模型】我们的讨论从最为简化的单一时期模型开始。首先我们考虑以下一个具体的例子: 例1一只股票现价为印美元,已经知道三个月之后该股票的价格或者将上升至肠美元,或者下降到54美元。现在有一只关于该股票的欧式看涨期权,执行价格为62美元,到期日为三个月后,则理论上该期权的公平价格应该是多少? 首先,该期权在到期日的价值有两种可能:如果股价升到肠美元,则该期权价值为66一62二4美元;如果股价降为54美元,则该期权价值为0o 为求出期权此时的价值,我们仍然可以根据无风险套利机会的假设,利用该股票和期权构造无风险投资组合,从而计算出期权的价值。在只有两种证券及两种可能结果的情况下,显然这些是可以做到的。 我们以△股该股票多头同一个该期权空头构造投资组合。如三个月后股价升至66美元,则此组合价值为66△一4;如股价于三个月后降至54美元,则此组合价值为54△。为使此组合成为无风险组合,两种可能下的组合价值应该相等,即: 66△一4二54△ 也就是 △=l/3 就是说,我们可以通过买进113股该股票而同时卖出一个该股票看涨期权,以构造无风险投资组合。如股价升至肠美元,该组合价值为66 xl乃一4=18美元,如股价降至54美元,其价值为54 x 113=18美元。无风险投资组合的收益率必须等于无风险利率水平,否则会有无风险套利机会出现。假定无风险利率为8%(年率,连续复利),则上述投资组合的现值为 18e一0.璐‘0·乃二17.酬4 因而有60xl/3一c=20一。=17.酬4 即e=2 .356 在无风险套利机会不存在的情况下,该股票的欧式看涨期权的价格应该是2 .356美元。 实际上,我们可以对例1所讨论的情况加以总结延伸。我们继续延用在第五章中使用的符号。另外,我们以u和d表示股价变动幅度系数(u>1,d<1),c。和cd表示股价上升和下降两种情况下欧式看涨期权在到期日的内在价值。这一单一时期股价及期权价值变动可以由图l表示。 乳 /一’。胃 一\﹄/一 /一 \j ,找 Sc 图1单一时期的股价及期权价值变动 我们知道,c。二Max(0,su一X),cd=Max(0,泌一X)。同例1中一样,我们以股票及期权构造无风险投资组合,即在卖出一个看涨期权的同时,买人△股股票。我们选择一个△值使得在到期日该投资组合的损益一样,因而有: Su△一c。==Sd△一cd△=(l) 因无风险投资组合的收益只能是无风险利率,在建立此组合成本为S△一C的情况下,有: S‘入一e=(Su△一。。)e一f『 上_式的左端为投资组合的初始成本,右端为到期日回报的现值。将式(l)代人上式,经过简化整理,可得:、、尹、,2几、︸了.,、了.、其中仁甲.、+(l一q)ed] e汀一d q=~了万 式(2)及(3)构成了单一时期欧式看涨期权的二项式定价模型。在例(l)中,有u二11,d=0 .9,r=0.08,T=0.25,e。=4,e,==0,据式(3),有: e0佣““25一0 .9 q二兰万下~一下卡匕二0.印10 性一1.卜0.9--·-一 又据式(2),有:一o哪X025「0.团10 x4+(l一0.印10)x.356结果同例(l)中计算的一样。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条