1) load characteristic curve
负荷特性曲线,负载特性曲线
2) load pattern
负荷曲线图,负载曲线图;负荷特性
3) load curve characteristics
负荷曲线特性
4) load characteristic curve
负荷特性曲线
1.
In the two-node system,firstly,the effect on the tangent point of system characteristic curve and load characteristic curve when a part of inductive constant power load is transferred into grounded branch is d iscussed.
在简单系统中,分析了将感性负荷的一部分等效为对地支路后对系统功率特性与负荷特性曲线相切点的影响。
5) V curve
V形曲线,负载特性曲线
6) X-ray tube rating charts
X射线管负荷特性曲线
补充资料:负荷特性
电力负荷从电力系统的电源吸取的有功功率和无功功率随负荷端点的电压及系统频率变化而改变的规律。
特性分类 负荷功率随负荷点端电压变动而变化的规律,称为负荷的电压特性;负荷功率随电力系统频率改变而变化的规律,称为负荷的频率特性;负荷功率随时间变化的规律,称负荷的时间特性。但一般习惯上把负荷的时间特性称为负荷曲线(有日负荷曲线、年负荷曲线等),而把负荷的电压特性和负荷的频率特性统称为负荷特性。
反映负荷点电压(或电力系统频率)的变化达到稳态后负荷功率与电压(或频率)的关系,称为负荷的静态特性;反映负荷点电压(或电力系统频率)急剧变化过程中负荷功率与电压(或频率)的关系,称为负荷的动态特性。
负荷功率又分为有功功率和无功功率。这两种功率的变化规律差别很大。将上述各种特征相组合,就确定了某一种特定的负荷特性,例如有功功率静态频率特性、无功功率静态电压特性等。
电力系统的负荷的主要成分是异步电动机、同步电动机、电热电炉、整流设备、照明设备等。在不同负荷点,这些用电设备所占的比重不同,用电情况不同,因而负荷特性也不同。
特性模型 负荷特性对电力系统的运行特性影响很大。例如,研究电力系统的暂态稳定性,采用不同的负荷特性可以得出不同的结论。因此,在电力系统的分析计算中采用有一定精度的负荷模型是很重要的问题。
到80年代为止,建立负荷模型有两种指导思想:一种是把负荷看成大量个别用电设备的集合,先求得每种类型用电设备的典型特性,经综合后得出综合的负荷特性;另一种是把综合负荷看作一个整体,用实验方法在现场实测负荷模型的参数。但是,由于影响负荷功率的因素很多,例如地区的生活水平、生活习惯、气候条件、资源情况等,都直接关系负荷功率的变化,这就造成负荷组成和负荷对功率需求有很大的随机性;再加上电力系统中现场实验和测量的困难,使得负荷模型的建立成为电力系统研究中的难题。
负荷特性模拟方法 在电力系统的分析计算中,模拟负荷特性的方法一般有以下4种。
①用恒定阻抗(或恒定功率、恒定电流)模拟负荷。这是最粗略的模拟方法,因而只适合某些近似计算。但因为这种方法比较简单,所以应用较为广泛。
②用负荷的静态特性模拟负荷。这种方法比用恒定阻抗(或恒定功率、恒定电流)模拟负荷要精确一些。它实质上是恒定阻抗、恒定电流、恒定功率3 种简单形态按一定比例的组合。一般在动态稳定和潮流计算中可以采用这种模拟方法。
③考虑感应电动机机械暂态过程的典型综合负荷动态特性的负荷模型。因为感应电动机(见异步电动机)是电力系统负荷的主要成分,因此在暂态稳定计算中,往往采用这种负荷模型考虑感应电动机在暂态过程中其滑差变化对稳态等值电路阻抗值的影响。
④考虑感应电动机机电暂态过程的典型综合负荷动态特性的负荷模型。这是比较精确的负荷模型。它既考虑感应电动机的机械暂态过程,又考虑电动机的电磁暂态过程。
特性分类 负荷功率随负荷点端电压变动而变化的规律,称为负荷的电压特性;负荷功率随电力系统频率改变而变化的规律,称为负荷的频率特性;负荷功率随时间变化的规律,称负荷的时间特性。但一般习惯上把负荷的时间特性称为负荷曲线(有日负荷曲线、年负荷曲线等),而把负荷的电压特性和负荷的频率特性统称为负荷特性。
反映负荷点电压(或电力系统频率)的变化达到稳态后负荷功率与电压(或频率)的关系,称为负荷的静态特性;反映负荷点电压(或电力系统频率)急剧变化过程中负荷功率与电压(或频率)的关系,称为负荷的动态特性。
负荷功率又分为有功功率和无功功率。这两种功率的变化规律差别很大。将上述各种特征相组合,就确定了某一种特定的负荷特性,例如有功功率静态频率特性、无功功率静态电压特性等。
电力系统的负荷的主要成分是异步电动机、同步电动机、电热电炉、整流设备、照明设备等。在不同负荷点,这些用电设备所占的比重不同,用电情况不同,因而负荷特性也不同。
特性模型 负荷特性对电力系统的运行特性影响很大。例如,研究电力系统的暂态稳定性,采用不同的负荷特性可以得出不同的结论。因此,在电力系统的分析计算中采用有一定精度的负荷模型是很重要的问题。
到80年代为止,建立负荷模型有两种指导思想:一种是把负荷看成大量个别用电设备的集合,先求得每种类型用电设备的典型特性,经综合后得出综合的负荷特性;另一种是把综合负荷看作一个整体,用实验方法在现场实测负荷模型的参数。但是,由于影响负荷功率的因素很多,例如地区的生活水平、生活习惯、气候条件、资源情况等,都直接关系负荷功率的变化,这就造成负荷组成和负荷对功率需求有很大的随机性;再加上电力系统中现场实验和测量的困难,使得负荷模型的建立成为电力系统研究中的难题。
负荷特性模拟方法 在电力系统的分析计算中,模拟负荷特性的方法一般有以下4种。
①用恒定阻抗(或恒定功率、恒定电流)模拟负荷。这是最粗略的模拟方法,因而只适合某些近似计算。但因为这种方法比较简单,所以应用较为广泛。
②用负荷的静态特性模拟负荷。这种方法比用恒定阻抗(或恒定功率、恒定电流)模拟负荷要精确一些。它实质上是恒定阻抗、恒定电流、恒定功率3 种简单形态按一定比例的组合。一般在动态稳定和潮流计算中可以采用这种模拟方法。
③考虑感应电动机机械暂态过程的典型综合负荷动态特性的负荷模型。因为感应电动机(见异步电动机)是电力系统负荷的主要成分,因此在暂态稳定计算中,往往采用这种负荷模型考虑感应电动机在暂态过程中其滑差变化对稳态等值电路阻抗值的影响。
④考虑感应电动机机电暂态过程的典型综合负荷动态特性的负荷模型。这是比较精确的负荷模型。它既考虑感应电动机的机械暂态过程,又考虑电动机的电磁暂态过程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条