1) approximately everywhere
近乎处处
2) almost sure asymptotic stability
几乎处处渐近稳定
1.
In this paper we present a study of the almost sure asymptotic stability properties of second order linear stochastic system with an egodic stiffness coefficient.
对刚度系数是遍历过程的二阶线性随机微分方程,本文研究了其平凡解几乎处处渐近稳定性问题。
3) almost everywhere
几乎处处
1.
This paper discusses the difference of the two of definitions of distribution func-tion, and the result is that the tow functions are equal almost everywhere.
其结论是:在不同方式的定义下,同一随机变量的分布函数几乎处处相等。
4) μ-almost everywhere,mu-almost everywhere
μ几乎处处
6) almost sure convergence
几乎处处收敛
1.
This paper presents some almost sure convergence properties and a strong law of large numbers for the partial sum of associated random variable sequences based on the Hajek-Renyi inequality for associated random variables and the Chung-Erdos inequality for event sequences using the Kronecker lemma and the Borel-Cantelli lemma,which generalize and improve the result in related literature.
文章基于相协随机变量序列的Hajek-Renyi不等式和事件序列的Chung-Erdos不等式,利用Krone-cker引理和Borel-Cantelli引理,给出相协随机变量序列部分和的几乎处处收敛性和强大数定律型的结果,推广和改进了吴爱娟论文中定理2和定理3的结果。
2.
In the paper,we prove an almost sure convergence for the maximum of stationary Gaussion vector sequencs under the conditons rn(p)log n(log log n)1+ε=O(1),rn(p,q)log n(log log n)1+ε=O(1),1≤p≠q≤d.
在rn(p)logn(log logn)1+ε=O(1),rn(p,q)logn(log logn)1+ε=O(1),1≤p≠q≤d的条件下,证明了平稳高斯向量序列最大值的几乎处处收敛。
3.
Complete convergence and Marcinkiewicz’s strong law and almost sure convergence for -mixing random sequences with different distributions are discussed.
讨论了不同分布的混合序列的完全收敛性、Marcinkiewicz强大数律及几乎处处收敛性,并获得了不同分布混合序列满足完全收敛性的一个充分性结果。
补充资料:几乎处处
几乎处处
almost - everywhere
IL乎处处[目m份t一eve口where:n啊“~江y],对几乎所有的x(关于测度料) 一种术语,表示某测度空间X上所有的点,可能除去一个测度为O的集A:拼(A)=O以外.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条