1) finite almost everywhere
几乎处处有限
2) almost everywhere finite
几乎处处有限的
3) almost everywhere
几乎处处
1.
This paper discusses the difference of the two of definitions of distribution func-tion, and the result is that the tow functions are equal almost everywhere.
其结论是:在不同方式的定义下,同一随机变量的分布函数几乎处处相等。
4) almost sure central limit theorem
几乎处处中心极限定理
1.
Note on the almost sure central limit theorem for ρ~--mixing sequences.;
ρ~--混合序列几乎处处中心极限定理的注记
2.
The almost sure central limit theorem for the maximum and minimum of stationary Gaussian sequences of d-mensional random vectors was considered as max1≤p≠q≤d supn≥0 |rn(p,q)|<1 and ρnlog n(log log n)1+ε=O(1).
max sup1≤p≠q≤dn≥0|rn(p,q)|<1且ρnlogn(log logn)1+ε=O(1)条件下,证明了d维标准化平稳高斯向量序列的最大值与最小值联合的几乎处处中心极限定理。
3.
Under the con- ditions of D′(u_n)and D_2({u_k,u_n}),an almost sure central limit theorem for the maximum of weakly de- pendent sequences is obtained.
设{ξ_i}_(i=1)~∞为弱相依平稳随机变量序列,{u_n}为给定的实数序列,在条件D′(u_n)和D_2({u_k,u_n})之下,研究了弱相依序列最大值的几乎处处中心极限定理。
5) almost sure limit theorem
几乎处处极限定理
6) almost sure local limit theorem
几乎处处局部极限定理
补充资料:几乎处处收敛
几乎处处收敛
convergence, almost - everywhere
几乎处处收救汇阴理馆en沈,习m渭t一eve。哪he碑;c划q卜MoeT‘no,T“.e犯灯」 见收徽性的类型(convergen优一tyPesof).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条