说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高阶微分
1)  differential of higher order
高阶微分
2)  high order differentiator
高阶微分器
1.
Based on the idea, the high order differentiator (HOD) that is well able to extract differential and high order differentials of measured .
基于这种思想设计了能高品质地提取量测信号的微分和高阶微分高阶微分器 (HOD ,high order differentiator) ,该HOD参数少 ,容易调节 ,并给出其稳定性、收敛性和滤波特性的证明 ;另外 ,对带有未知扰动、模型未知的非线性SISO和MIMO系统分别设计了基于HOD的高阶微分反馈自适应控制器 (HODFC ,high order differentials feedback adaptive controller) ,给出了闭环系统稳定性和鲁棒性分析 ,并且实现了线性化解耦控
3)  high-order PDE
高阶偏微分
1.
Based on analysis the shortages in Tikhonov,total variation and higher order partial difference models,a novel algorithm is proposed by combining the total variation model and high-order PDE ones.
针对传统图像放大处理过程中基于线性插值方法通常导致边缘模糊问题,分析了Tikhonov模型、全变差模型和高阶偏微分模型在图像处理中的优缺点,提出了一种全变差和高阶偏微分模型自适应结合的图像放大模型及推导算法。
4)  higher order differentiation
高阶微分法
5)  higher order partial differential equation
高阶偏微分方程
1.
This paper studies oscillation for the solutions of neutral higher order partial differential equation with continuous distributed deviating arguments.
研究了一类含有连续分布滞量的中立型高阶偏微分方程解的振动性,获得了该方程在两类边值条件下解振动的充分条件。
6)  high-order differential equation
高阶微分方程
1.
There are a lot of ways to find the solution of the high-order differential equation.
高阶微分方程求解方法很多,但多为求实特征根,求虚特征根的方法也是在一定范围下的解。
2.
By means of better prior estimate and the coincidence degree theory,we study the existence of periodic solutions for a kind of high-order differential equation with delay shch as (x(t)-cx(t-σ))(n)+∑n-1i=2aix(i)(t-δi)+g(t,x(t-r(t))=f(t,x(t-τ(t)),x′(t-δ(t)))+p(t) Some new sufficient condition of periodic solutions is obtained on the even more conditions.
利用更精确的估计和重合度理论,研究了一类具有时滞的高阶微分方程(x(t)-cx(t-σ))(n)+∑n-1i=2aix(i)(t-δi)+g(t,x(t-r(t))=f(t,x(t-τ(t)),x′(t-δ(t)))+p(t)的周期解存在性问题,在更弱的条件下获得了该方程周期解性的若干新的充分条件,推广和改进了已有文献的相关结果。
3.
This paper obtains a new oscillation theorem of high-order differential equation with damping.
本文建立了具有阻尼项的高阶微分方程新的振动定理。
补充资料:二阶线性齐次微分方程

二阶线性微分方程的一般形式为

ay"+by'+cy=f(1)

其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为

ay"+by'+cy=0(2)

称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条