1) covering lemma
覆盖引理
2) physical cover
物理覆盖
1.
Construction of physical cover approximation in manifold method based on least square interpolation
基于最小二乘近似构造流形方法的物理覆盖函数
2.
The numbers of physical cover of the cover system in NMM when the crack was extended were amended through the setting of hanging nodes.
探讨了基于三角形有限元网格的平面流形元覆盖系统;通过设置流形单元的悬挂节点来修改裂纹扩展时流形覆盖系统中的节点下标(物理覆盖编码),通过初始有限单元被物理网格再剖分后所生成的流形单元链表的设置提出了裂纹扩展时新生成的流形单元中物理覆盖编码(有限单元节点及下标)、悬挂节点信息和积分区域角点信息的生成方法,进而提出了裂纹扩展时流形元方法的物理覆盖和流形单元的生成算法。
3.
The technology of automatically forming of cover system in MM has also been studied from the definition of mathematical cover and physical cover.
用覆盖所有材料区域但独立于材料实际几何边界的任意形状数学网格和实际的物理网格来建立流形方法的覆盖系统 ,直接从数学覆盖和物理覆盖的定义出发 ,探讨了流形方法覆盖系统的全自动生成技术 ,并用VisioC ++及其标准类库实现了流形单元和 2套覆盖的自动形成和编号 。
3) physics cover
物理覆盖
1.
Firstly, the method of automatically forming for the mathematics covers and physics covers as well as its grid was studied; and then the way of automatically forming for number of two series of covers was also researched.
系统地探讨了流形元覆盖系统的形成方法 ,基于三角形有限元网格 ,探讨了流形元数学覆盖和物理覆盖及其流形元分析网格的形成技术 ,研究了流形元两套覆盖编号的自动形成方法。
5) covering theorem
覆盖定理
1.
Next, we study its condition of starlikeness and covering theorems by using the properties of univalent functions and a differential inequality.
本文引入了一个涉及Ruscheweyh导数的解析函数子类,应用微分从属方法和Carlson-Shaffer算子讨论了它的从属关系和偏差定理;其次,应用单叶函数的性质和一个微分不等式研究了它的星象性条件和覆盖定理。
6) covering theory
覆盖理论
1.
Based on the Stampfli-Ghler square-rhombus-triangle tiling model,the quasi-unit cell is successfully constructed,which can describe the dodecagonal quasiperiodic structure by the covering theory.
在Stampfli-Gahler正方形-菱形-三角形拼图模型的基础上,成功地构造出了准晶胞,使得十二次对称准周期结构可以用覆盖理论描述。
补充资料:物理学危机(见物理学革命)
物理学危机(见物理学革命)
crisis in physics
谜幂咪革命奋一(c ris始inphysics)见漪理学
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条