1) Gradient Map
渐变映射
2) shade diffraction
渐变衍射
1.
Fresnel diffraction of visible light and multi-filter shade diffraction is analyzed and simulated and tested.
分析了光学融合方法与电子融合方法的不同,对可见光的菲涅耳衍射与多层减透膜渐变衍射进行了分析、仿真和实验,在此基础上提出了在异形屏幕多通道投影中采用多层减透膜渐变衍射光学融合的方法。
3) asymptotically nonexpansive mappings
渐近非扩张映射
1.
Weak convergence theorem of asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的弱收敛定理
2.
In particular, fixed point problems of asymptotically nonexpansive mappings in product space are discussed, the convergence problems of the new interative sequence for nonexpansive mappings under specific conditions are discussed in this thesis.
特别讨论了积空间中渐近非扩张映射的不动点问题,研究了某些非扩张映射迭代序列在特定条件下的收敛性问题。
4) asymptotically nonexpansive mapping
渐近非膨胀映射
1.
A theorem on weak convergence for asymptotically nonexpansive mappings is proved and the result of Passty is generalized.
讨论了具有Frechet可微范数的一致凸Banach空间上的渐近非膨胀映射序列的弱收敛性,推广了Passty的结果。
2.
In this paper, we consider the fixed point problems of asymptotically nonexpansive mappings on the weak compact or compact subset of the Banach space, and under some boundary conditions, proving that these mappings have fixed points.
本文考虑了Banach空间上有界弱紧子集及紧子集上的渐近非膨胀映射的不动点问题,在一定的边界条件假设下,证明了这类映射有不动
5) asymptotically nonexpansive mapping
渐近非扩张映射
1.
Convergence theorems for asymptotically nonexpansive mappings in Banach space;
Banach空间中渐近非扩张映射的收敛定理
2.
First give the definition of a new mapping—(L-α) uniformly lipschitz asymptotically nonexpansive mapping on a uniforn convex Banach space,then construct three-step iterative sequences of(L-α) uniformly lipschitz asymptotically nonexpansive mapping in this subset.
首先定义一致凸Banach空间某非空紧子集上的一种新的映射—(L-α)一致李普希兹渐近非扩张映射,在该子集上构造关于(L-α)一致李普希兹渐近非扩张映射的三步迭代序列,然后来讨论三步迭代序列的收敛性。
3.
A convergence of Ishikawa iteration sequence with errors is investigated in this paper for asymptotically nonexpansive mapping in uniformly convex Banach spaces.
在一致凸 Banach(巴拿赫 )空间中研究了渐近非扩张映射的带误差的Ishikawa迭代序列的收敛性。
6) asymptotically nonexpansive mapping
渐进非扩张映射
1.
Xu and Noor had proved the theorem on convergence of three-step iterations for asymptotically nonexpansive mapping on nonempty closed,bounded,and convex subset of uniformly convex Banach space.
Xu和Norr已经证明了建立在一致凸Banach空间的一个非空有界闭凸子集上的渐进非扩张映射的三步迭代的收敛定理问题 。
2.
In this paper, we study a class of weakly generalized mixed variational inequalities which are new, also study the convergences of iterative sequences to a comman fixed point of two asymptotically nonexpansive mappings and two relatively nonexpanseive mappings, respectively.
本文研究了一类新的弱广义混合变分不等式及渐进非扩张映射对、相对非扩张映射对的公共不动点的迭代逼近问题。
补充资料:扩张映射
扩张映射
expanding mapping
【补注]Y系统在西方文献中通常称为AHocoB系统(A阳sovs岁ton).扩张映射【e%卿喇吨n.跳那嗯;paeT,roaa啊ee oTo6Pa-袱eH“e」 一个由闭流形M到它自身上的可微映射f,在其作用下所有切向量的长度(在某种,因而在任何R记-n必n刀度量的意义下)依指数速率增长,即存在常数C>0与义>1,使对一切X任TM与一切n>0, {ITI,(X){I)C又nt}X!1.此概念也有不带可微性条件的变形,它能概括许多以前研究过的一维情形的例子作为特例.扩张映射的性质类似于y系统(Y一s那tem)的性质,并且部分性质甚至还简单些(例如,C,类的扩张映射恒有作为正密度用局部坐标定义的有限不变测度).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条