1) stress dyadic
应力并矢
2) dyadic of strain
应变并矢式
3) stress vector
应力矢量
1.
The stress vector_based constitutive model for cohesionless soil, proposed by SHI Hong_yan et al, was applied to analyze the deformation behaviors of materials subjected to various stress paths.
将史宏彦等提出的无粘性土的应力矢量本构模型应用于分析多种复杂应力路径下材料的变形问题· 结果表明 ,此模型不仅能够很好地反映无粘性土的应力应变非线形、硬化性、剪缩剪胀性、与应力路径的相关性、主应力与主应变增量方向之间的非共轴性以及球偏应力与变形的耦合性等主要变形特性 ,而且也能够同时考虑主应力轴的旋转和中主应力对土的变形及强度的影响· 模型预测结果与试验结果之间的良好吻合表明了该模型的广泛适用性
2.
It can not only take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, but also describe well the main deformation behaviors of soil, such as stress strain nonlinearity, hardening property, dilatancy, stress path dependency and the non coaxiality between the principal stress and the principal strain increment directions.
提出了一种新的、适用于正常固结土在静荷作用下的应力矢量型非线性本构模型。
4) dyad
[英]['daiæd] [美]['daɪæd]
并矢
1.
It is also shown that the dyad is .
据此,可以阐明并矢正是二矢量的外积,并建立了其与张量的对应关系。
5) dyadic
[英][dai'ædik] [美][daɪ'ædɪk]
并矢
1.
Using dyadic method, non-homogeneous wave equations of time-harmonic electromagnetic field are solved directly, several examples are calculated.
运用并矢代数方法,直接求解时谐电磁场的非齐次波动方程,并给出应用实例。
2.
In this paper we have exploited the dyadic product between vector products to deduce the coordinate-independent formula of scalar product and vector product between angular momentum operators.
笔者利用矢量算符的并矢计算的方法,对在量子力学中常用到的角动量算符的矢积与标积的公式,给出了一个不依赖于角动量算符的坐标表示的推导,并将它们应用于推导薛定锷方程的球坐标表示,角动量算符的矢量积公式实际上就是角动量算符之间的对易关系。
补充资料:轧辊残余应力(见轧辊应力)
轧辊残余应力(见轧辊应力)
residual stresses in roll
zhagun eanyu yingli轧辊残余应力(residual stresses in roll)见礼辐应力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条