说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 可变加热法
1)  CVD variable-heating-rate method
可变加热法
2)  heating variable
可变化加热
3)  variable-latency algorit hm
可变延时浮点加法算法
4)  variable pressure
可变加压
5)  variable weighting
可变加权
6)  heat distortion test method
加热变形试验方法
补充资料:不动点算法
      又称固定点算法。所谓不动点,是指将一个给定的区域A,经某种变换??(x),映射到A时,使得x=??(x)成立的那种点。最早出现的不动点理论是布劳威尔定理(1912):设A为Rn中的一紧致凸集, ??为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=??(x)。其后,角谷静夫于1941年将此定理推广到点到集映射上去。设对每一x∈A ,??(x)为A的一子集。若??(x)具有性质:对A上的任一收敛序列xi→x0,若 yi∈??(xi)且yi→y0,则有y0∈??(x0),如此的??(x)称为在A上半连续,角谷静夫定理:设A为Rn中的一紧致凸集,对于任何x∈A,若??(x)为A的一非空凸集,且??(x)在A上为上半连续,则必存在x∈A,使x∈??(x)。J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。
  
  不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。例如,关于代数方程的基本定理,要证明??(x)=0必有一根,只须证明在适当大的圆│x│≤R 内函数??(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。对于一个给定的凸规划问题:min{??(x)│gi(x)≤0,i=1,2,...,m},在此,??和g1,g2,...,gm皆为Rn中的凸函数。通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。
  
  在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。1964年,C.E.莱姆基和 J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。1967年,H.斯卡夫将此证法应用到数学规划中去。其后,不动点定理的构造性证明有了大的发展和改进。
  
  H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。现以n 维单纯形Sn为例来说明这一概念,在此,。对每一i, 将区间0≤xi≤1依次分为m1,m2...等分,m12<...,mi→,是给定的一列正整数。对于固定的i,过分点依次作平行于xi=0的平面。 这些平面将Sn分成若干同样大小的n维三角形。它们的全体作成的集 Gi,称为Sn的一三角剖分。设??(x)为 Sn→Sn的一连续函数,x=(x1,x2,...,xn+1),??(x)=(??1(x),??2(x),...,??n+1(x))。定义。由于??(x)和x皆在Sn上,若有则显然有??(x)=x,即x为??(x)的一不动点。
  
  对每一点y∈Sn赋与标号l(y)=k=min{j│y∈Cj,且yj>0}。由著名的施佩纳引理,在Gi中必存在一三角形σi,它的n+1个顶点yi(k)的标号分别为k(k=1,2,...,n+1)于是可得一列正数ij(j→),使得(k)→yk,k=1,2,...,n+1。根据σi的作法,当ij→时,收敛成一个点x。故yk=x,k=1,2,...,n+1。因 (k)的标号为k,故yk∈Ck,因而即x为所求的不动点。因此,求??(x):Sn→Sn 的不动点问题就化为求 σi(i=1,2,...) 的问题。为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等。关于如何求σi,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之Sn改为Rn或Rn中之一凸集。求一凸函数在一凸集上的极值问题也可化为求不动点问题。一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况。
  
  

参考书目
   A.J.J.TalmanVariable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条