说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 电子束加工,电刻
1)  E.B.M (electron beam machining)
电子束加工,电刻
2)  electron beam machining
电子束加工
3)  Electron beam engraving
电子束雕刻
4)  electron beam lithography
电子束光刻
1.
Principle of electron beam lithography and its application on the nanofabrication and nanodevice;
电子束光刻技术的原理及其在微纳加工与纳米器件制备中的应用
2.
Methods of proximity effect correction in electron beam lithography;
电子束光刻中邻近效应校正的几种方法
3.
Application of chemically amplified resists in electron beam lithography;
化学放大胶在电子束光刻技术中的应用
5)  electron beam lithography
电子束刻蚀
6)  E-beam lithography
电子束光刻
1.
For fabricating X-ray mask of high line-density X-ray transmission gratings,the field stitching of E-beam lithography was analyzed when patterning high line-density gratings;by using pattern correction and low sensitive 950 k PMMA resist,the proximity effect of electron beam was effectively depressed when exposing thick resist spun on polyimide membrane.
为了制备高线密度X射线透射光栅掩模,分析了电子束光刻中场拼接对高线密度光栅图形的影响;利用几何校正技术和低灵敏度的950 k的PMMA电子束抗蚀剂,克服了电子束的邻近效应对厚胶图形曝光的影响。
2.
We present an all-e-beam lithography(EBL) process for the patterning of photonic crystal waveguides.
以光子晶体Fabry-Perot腔为例,提出了全电子束光刻制作光子晶体波导器件的解决方案。
补充资料:电子束加工
      利用电子束的加热效应或辐射效应对材料进行的加工。利用电子束的热效应可以对材料进行表面热处理、焊接、刻蚀、钻孔、熔炼,或直接使材料升华。电子束曝光则是一种利用电子束辐射效应的加工方法(见电子束与离子束微细加工)。
  
  作为加热工具,电子束的特点是功率高和功率密度大,能在瞬间把能量传给工件,电子束的参数和位置可以精确和迅速地调节,能用计算机控制并在无污染的真空中进行加工。根据电子束功率密度和电子束与材料作用时间的不同,可以完成各种不同的加工。
  
  
  电子束焊接  电子束功率密度达105~106瓦/厘米2时,电子束轰击处的材料即局部熔化;当电子束相对工件移动,熔化的金属即不断固化,利用这个现象可以进行材料的焊接。电子束焊具有深熔的特点,焊缝的深宽比可达20:1甚至50:1。这是因为当电子束功率密度较大时,电子束给予焊接区的功率远大于从焊接区导走的功率。利用电子束焊的这一特点可实现多种特殊焊接方式。利用电子束几乎可以焊接任何材料,包括难熔金属(W、Mo、Ta、Nb)、活泼金属(Be、Ti、Zr、U)、超合金和陶瓷等。此外,电子束焊接的焊缝位置精确可控、焊接质量高、速度快,在核、航空、火箭、电子、汽车等工业中可用作精密焊接。在重工业中,电子束焊机的功率已达100千瓦,可平焊厚度为200毫米的不锈钢板。对大工件焊接时须采用大体积真空室,或在焊接处形成可移动的局部真空。
  
  电子束刻蚀和电子束钻孔  用聚焦方法得到很细的、功率密度为 106~108瓦/厘米2的电子束周期地轰击材料表面的固定点,适当控制电子束轰击时间和休止时间的比例,可使被轰击处的材料迅速蒸发而避免周围材料的熔化,这样就可以实现电子束刻蚀、钻孔或切割。同电子束焊接相比,电了束刻蚀、钻孔、切割所用的电子束功率密度更大而作用时间较短。电子束可在厚度为0.1~6毫米的任何材料的薄片上钻直径为1至几百微米的孔,能获得很大的深度-孔径比,例如在厚度为 0.3毫米的宝石轴承上钻直径为25微米的孔。电子束还适合在薄片(例如燃气轮机叶片)上高速大量地钻孔。
  
  电子束熔炼  电子束熔炼法发明于1907年,但直到50年代才用于熔炼难熔金属,后来又用于熔炼活泼金属(如Ti锭)和高级合金钢。电子束加热可使材料在真空中维持熔化状态并保持很长时间,实现材料的去气和杂质的选择性蒸发,可用来制备高纯材料。电子束加热是电能转为热能的有效方式之一,大约有50%功率用于熔化和维持液化。功率在60千瓦以下的电子束熔炼机可用直热式钨丝作为电子枪的阴极。60千瓦以上熔炼机的电子枪则用间热式块状钽阴极,它由背后的钨丝所发射的电子轰击加热到 2700K,可有每平方厘米为几安的发射电流密度。电子枪加速电压约30千伏,这样容易防止电击穿和减弱 X射线辐射,电子束用磁聚焦和磁偏转。电子枪和熔炼室用不同的真空泵抽气,真空度分别维持在10-3和10-1帕左右。80年代已生产出600千瓦级的电子枪。如需更大功率,可用几支电子枪同时工作。利用电子束加热可铸造100吨的坯料。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条