1) radiation induced dimensional change
辐照诱发的尺寸变化
2) neutron-irradiation-induced embrittlement
中子辐照[诱发的]脆化
4) dimension change
尺寸变化
1.
The full analysis and summarization on the dimension change regulation and factors and mechanisms affecting heat treatment distortion have been made,and the practical countermeasure has been given to reduce heat treatment distortion of the bearing components.
对轴承零件热处理后尺寸变化规律及影响轴承零件热处理变形的各种因素及机理进行了全面分析和总结 ,并提出了解决轴承零件热处理变形的具体措施。
5) Dimensional change
尺寸变化
1.
Dimensional change and its control play an important role in the production process and the cost of PM steel components.
烧结零件的尺寸变化及控制对其生产过程及成本至关重要。
2.
The dimensional change of 2A12 aluminum alloy by microarc oxidation in silicate electrolyte has been investigated.
研究了2A12铝合金在硅酸盐电解液中微弧氧化的尺寸变化。
3.
The dimensional change models were developed for conversion of preceramic polymer- filler systems into ceramic bulks during pyrolysis, such as pure preceramic polymer, polymer containing an inert filler phase, polymer containing an active filler phase, and polymer containing inert filler and active filler phases.
对单一先驱体、先驱体/惰性填料、先驱体/活性填料体系裂解陶瓷的尺寸变化进行了模型分析,从理论上分析了活性填料体积分数与裂解陶瓷体积收缩率和线收缩率之间的关系。
6) dimension variance rate
尺寸变化率
1.
Bi can refine primary silicon phase and improve mechanical properties,wear resistance of ZA40 alloy obviously,and at the same time reduce dimension variance rate to improve the dimensional stability.
尺寸变化率减小,稳定性提高。
补充资料:中子辐照
中子辐照
neUtron irradiation
中子辐照neutron irradiation裂变中子、聚变中子以及其他中子的辐照。中子与材料中的原子核可以发生弹性散射、非弹性散射、核反应和核吸收。在弹性散射中,中子与核的动能守恒。发生非弹性散射时,中子的能量必须高于核的激发态的能量,这时总能量守恒而动能不守恒。中子与核有可能发生核反应,如(n,p),(n,Zn)和(n,a)等。核吸收是原子核吸收中子后辐射下射线使核得到反冲能的(n,种反应。这几种反应都能造成材料的辐照损伤,以弹性散射最为严重。在核燃料中,中子可以与核发生核裂变,裂变碎片是燃料的主要损伤源,也对邻近的包壳材料产生影响。 种类中子辐照有以下3类。 ①热中子辐照:热中子对材料的辐照损伤是由(n,户反应产生的反冲原子引起的。反冲原子的能量比较低,一般只形成孤立的弗伦克尔(Frenkel)对或小的弗伦克尔缺陷团,反应产生的擅变原子成为材料中的杂质原子。热中子堆的压力容器,部分是这个过程造成的损伤。单晶硅的热中子掺杂效应3051(n,下)”‘51 03‘P,也因为辐照损伤而需要进行退火处理。热中子也能在被(Be)中发生(n,a)和(n,T)反应,使材料强度提高,塑性下降。 ②快中子辐照:快中子反应堆中的材料的辐照损伤主要是由能量在0.IMeV以上的中子通过弹性散射产生的。以IMeV的快中子为例,它在不锈钢中产生的初级碰撞原子(PKA)的平均能量为30一40 keV,最高可达70 keV,级联碰撞区的离位原子数可达(3 .5一7.0) X102个,形成比较大的贫原子区和间隙原子富集区。快中子还能与不锈钢中的镍(Ni)元素发生(n,a)和(n,p)反应,产生氦(He)和氢(H),加上材料中残留的氧(02)、氮(NZ)等气体将稳定原子贫乏区,使之演变成为空洞,致使不锈钢发生空洞肿胀。快中子辐照产生的空位和间隙原子与位错相互作用的结果,增加材料的蠕变速率。 ③聚变中子辐照:14MeV的中子在不锈钢中产生平均能量为O.SMeV的PKA,这时的级联碰撞区将分开为一些相距较近的亚级联碰撞区,每一个区的大小约相当于25一30 keV的反冲原子形成的级联区。14MeV的中子发生(n,a)和(n,p)核反应的概率更大,产生更多的氦和氢,‘并有更多的擅变原子作为杂质原子留在材料内部。因此, 14MeV中子与IMeV快中子相比,离位损伤率更高,氦脆(见辐照效应)、空洞肿胀和机械性能下降的问题更为严重。 损伤剂量在核裂变反应堆中,铀一235裂变产生的中子的能量大都高于1 MeV。快中子反应堆中典型的中子能量是IMeV。在热中子反应堆中,裂变中子受到慢化,在反应堆运行温度下能量降至leV以下,进入热能中子范围。所以,热中子堆和快中子堆的中子能谱不同。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条