1) period of oscillation
振荡周期,振动周期,舞动周期
2) vibration period
振动周期
1.
Research of vibration period for overweighted compound pendulum;
加配重复摆振动周期的实验研究
2.
Influence of air resistance on the vibration period of compound pendulum;
空气阻力对复摆振动周期的影响
3) periodic vibration
周期振动
1.
The acceleration and differential equations of motion of a single pendulum with variable suspension point and length are obtained by two methods; the condition of periodic vibration of globule is analyzed; the position of maximum value of angle velocity is discussed and the phase diagram is given by the computer.
用两种方法导出了变悬点变摆长单摆的加速度和运动微分方程 ,分析了小球作周期振动的条件 ,讨论了角速度取最大值的位置 ,并通过计算机数值计算 ,画出了小球作周期振动时的相
2.
A solution to the periodic vibration of strongly nonlinear symmetric oscillators is given.
给出一类强非线性对称振子周期振动的一种解法。
3.
The periodic vibration of Terfenol-D rod as a key structural element in linear magnetostrictive actuator is numerically analyzed.
对Terfenol-D杆的周期振动问题进行了数值分析。
4) vibration cycle
振动周期
1.
The microseism source excitation model and the relation between the magnitude and vibration cycle
微震振源激振模型及振动周期与震级的关系
2.
This paper introduces a computing simulating method integrating MDT with working model simulation and proposes a method for studying the vibration cycle of the runaway escapement by nitegrating mathematics models with fiction body ones.
本文介绍一种以MDT 建模与Working Model仿真相结合的计算机仿真手段,提出了以数学建模与虚拟实体相结合研究钟表机构振动周期的方法。
3.
The influence of the quality of springs on the vibration cycle in the experiment of studying the vibrator vibration of springs is discussed.
本文讨论了在“简谐振动的研究”实验中,弹簧质量对振动周期的影响。
5) period of vibration
振动周期
1.
The period of vibration of a homogeneous cylinder in a non-fixed inner semicylindrical surface;
均质圆柱体在非固定半圆形柱面内的振动周期
2.
The influence of translational kinetic energy on the period of vibration is analyzed.
建立了摆的动力学方程,导出了动能定理的微分表达式和积分表达式,用MATLAB软件编程画出了转动动能、平动动能与角坐标间的关系曲线,分析了平动动能对振动周期的影响。
补充资料:振荡周期
分子式:
CAS号:
性质:在衰减振荡中,两个相邻同方向峰值之间的时间称为振荡周期Tp,振荡频率2π/Tp。在相同衰减比下,振荡周期越短或振荡频率越高,则回复时间越短,因此振荡周期(频率)反映系统响应快慢的指标。
CAS号:
性质:在衰减振荡中,两个相邻同方向峰值之间的时间称为振荡周期Tp,振荡频率2π/Tp。在相同衰减比下,振荡周期越短或振荡频率越高,则回复时间越短,因此振荡周期(频率)反映系统响应快慢的指标。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条