1) low speed Francis turbine
低速混流式水轮机
2) Francis turbine
混流式水轮机
1.
Research on numerical methods and reasons of cracks in francis turbine runner;
混流式水轮机裂纹成因及其数值计算方法研究
2.
Turbulent simulation of Francis turbine with 3D guide vanes;
应用三维导叶的混流式水轮机湍流计算
3.
3-D modeling of Francis turbine blade based on PRO/E;
基于PRO/E的混流式水轮机叶片的三维造型
3) Francis hydraulic turbine
混流式水轮机
1.
The influences of relief pipes of Francis hydraulic turbine on the flow field of the sealing clearance and its environs;
混流式水轮机减压管对密封间隙及其周围流场的影响
2.
In this paper,the three-dimensional unsteady multiphase flow is simulated in the whole passage of Francis hydraulic turbine.
本文对某电站原型混流式水轮机进行三维非定常多相湍流模拟,对大轴中心孔补气前后水轮机各过流部件内的压力脉动进行计算,并与试验结果相比较,探讨了水轮机补气减振的机理。
3.
As the huge Francis hydraulic turbines are widely used,the interblade vortices may affect the operation stability of the turbines.
混流式水轮机在偏离最优工况区运行时,不但在尾水管中有明显的旋转涡带,在转轮区也会有涡束沿着叶片流出,我们称之为叶道涡。
4) horizontal Francis turbine
混流卧式水轮机
5) Francis hydro turbine
混流式水轮机
1.
Mathematical modeling of fluid-induced vibration ofFrancis hydro turbine blades;
混流式水轮机叶片流激振动机理的数学描述
2.
A fully coupled modeling and numerical simulation of flow-induced vibration of three-dimensional blades for a Francis hydro turbine in unsteady turbulent flow are presented.
结合小变形弹性理论和不可压缩粘性流体的最大功率耗散原理构造流体-叶片系统的功率泛函,通过广义变分原理建立了混流式水轮机转轮叶片在非定常湍流场中考虑流体-结构相互作用(FSI)的有限元模型,计算叶片在FSI情况下的流激振动。
3.
Considering compressibility of the water in the flowing passage of a Francis hydro turbine and the fluid-structure interaction between the water and the blades, lots of comparative analysis on the coupling dynamic characteristics of the blades were done by using FEM based on the displacement-pressure scheme.
考虑水体的压缩性,用有限元法的位移-压力格式及Galerkin法对混流式水轮机转轮叶片-流体组成的流固耦合系统进行离散,建立了流固耦合系统的振动控制方程,在此基础上对转轮及单个叶片的耦合模态进行了计算,详细分析了转轮及叶片在水中的动力特性,发现叶片在流固耦合情况下的一些新的特性。
6) Francis turbine
混流式水轮机组
1.
Many test researches have been done on prototype test of large Francis turbine units.
对加拿大、法国、俄罗斯、德国、美国及中国等6个不同国家生产的大型混流式水轮机组进行了全面的真机试验研究。
补充资料:混流式水轮机
混流式水轮机
Francis turbine
展趋势是高水头、大容量、高比转速和高效率。当前,世界上使用水头最高的混流式水轮机是奥地利的豪依斯林(Hausling)水电站,其最大水头为734m,单机输出功率为180 MW。单机输出功率最大的混流式水轮机是美国的大古力三厂(见大古力水电站)的第22~24号机组的水轮机,其额定输出功率为716 MW(最大水头为108.Zm),转轮的最大外径为9.gm。前苏联的图2弗朗西斯式水轮机示意图萨扬一舒申斯克水电站(ea月卜,o一川,川e、,e‘a月r咒)最大水头22om,单机额定输出功率650 MW,其水轮机最高效率为95.8%。中国单机输出功率最大的混流式水轮机为二滩水电站水轮机,其额定输出功率为582 MW,最大输出功率621 MW,转轮直径6.2574m;使用水头最高的为鲁布革水电站,其最大水头为372.sm,单机额定输出功率为153 MW,最高效率为94.6%。hunjlushl shu诊lunll混流式水轮机(Francis turbine)轴面水流由径向进人、轴向流出转轮,将水流能量转换为旋转机械能的反击式水轮机。混流式水轮机的使用水头范围一般在30~700m,大、中型常规式机组多用到400m左右。 结构及其特点混流式水轮机结构简单,主要部件包括蜗壳、座环、导水机构、顶盖、转轮、主轴、导轴承(见水轮机导抽承)、底环、尾水管等,见图1,图 ┌───┬───┬────────┐ │一{ │盖 │ 蜓 ┌─┤ │ ├───┼帮──┐ │) │ │ │「一一│力n兀 │ │ │ │ ├───┼───┘ │ │ │ │,,、│ │ │ ┌─┐├───┼───┴────┬─┼─┼──┐│n-││月p形 │干午产爪 │压│l │日 ││ │└───┤ │ │ │ │├─┤ ├────────┼─┼─┼──┤│[ │ ├酗┐ │区│l │!」 ││ │ │{ │ ├─┴─┴──┘└─┘ │ │ │ └─┴──────┘ 图1混流式水轮机结构图 l一座环;2一导水机构;3一转轮;4一顶盖;5一主轴; 6一蜗壳;7一尾水管中同时标示出水流流向。蜗壳是引水部件,形似蜗牛壳体,一般为金属材料制成,圆形断面。座环里于蜗壳和导叶之间,由上环、下环和若干立柱组成,与蜗壳直接连接;立柱呈冀形,不能转动,亦称为固定导叶。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条