1) logarithmic-to-linear converter
对数函数-线性函数变换器
2) nonlinear function transformation
非线性函数变换
1.
A nonlinear function transformation of symmetric regularized long wave equations is derived by using the homogeneous balance method.
利用齐次平衡方程导出了对称正则长波方程的一个非线性函数变换 ,利用这个变换 ,求得了该方程精确孤立波
2.
Several nonlinear function transformations for a Burgers Fisher equation(BFE) and a generalized Burgers Fisher equation(GBFE) are derived by using the homogeneous balance principle, the BFE and GBFE are reduced to some overdetermined linear equations by means of the transformations.
利用齐次平衡原则导出Burgers-Fisher(BF)方程和广义Burgers-Fisher(GBF)方程的若干非线性函数变换,借助这些变换将BF和GBF方程化为过定线性方程组,从而得到其若干含有任意参数的精确解。
3) linear functional transformation
线性函数变换
1.
Using linear and nonlinear functional transformation and integral differential equation,some explicit exact solutions of a class of nanlinear coupled KdV equations are given concisely.
用线性、非线性函数变换和可积的微分方程,非常简便地得到了一类非线性耦合KdV方程组的若干显式精确解,其中包括线性、非线性相关的解析解。
4) functional converter
函数变换器
5) transformation function
变换函数
1.
This paper shows that errors in the failure probability also come from curvatures in transformation functions from nine non-Gaussian distributions ,a.
本文通过研究9种非正态分布类型的正态概率变换函数的曲率值,得出了不同非正态分布类型对一次可靠度方法计算精度的影响规律。
2.
By analyzing the Euclidean distance function and its extension, the conception of the similarity in time series describing the relationship of similarity with a uniform similarity function and transformation function was proposed.
在这种概念体系中 ,相似性只能是某种相似性函数和变换函数约束下的相似 ,客观的相似性结果依赖于相似性函数和变换函数的主观选取 。
3.
Methods The function transformation theory,grey system modeling theory and genetic algorithm were used to calculate the parameters of transformation functions.
方法应用函数变换理论和灰色系统建模理论,同时运用遗传算法计算变换函数中的参数。
6) function transformation
函数变换
1.
Starting from the basic principle of memory,we carry out the theoretical studies according to the sampling theory,summarize out the functions of function transformation of the memory,put forward the idea of using the DDS method to design the function generator.
从存储器的基本工作原理出发 ,依据采样定理 ,在理论上对存储器进行了研究 ,总结出存储器具有的函数变换的功能 ,提出了采用DDS方法设计函数发生器的思想 ,在此基础上给出了用EPROM构成的可编程多种模拟连续函数发生器的应用实例 。
2.
Based on the auxiliary equation method,a method of auxiliary equation of elliptic function combined with function transformation is proposed.
在辅助方程法的基础上给出第一种椭圆辅助方程和函数变换相结合的一种方法,并借助符号计算系统Mathematica构造了带强迫项变系数组合KdV方程的类Jacobi椭圆函数精确解以及退化后的类孤子解和三角函数解。
3.
Some travelling wave solutions to the Noyes-Fied equations and Burgers-KdV equation are obtained by using function transformations.
通过函数变换,得到了Noyes-Field方程组及Burgers-KdV方程的行波解,求解的基本思路是把非线性偏微分方程组化为代数方程组求解,所用方法具有广泛的实用性。
补充资料:对数函数
对数函数
logarithmic function
对数函数[三q笋亩腼血加K垃犯;邢‘即加中M,e~中,玲u““],对数(109创thm) 指数函数(exponentjall加山on)的反函数.对数函数表示如下: y=In戈;(l)与自变量x的值对应的函数值y,称为x的自然对数(nat幽」109山山m).由定义,关系式(1)等价于 x=ey·(2)因为对于任何实数y,尸>O,所以对数函数仅对x>0有定义.在更一般的意义下,对数函数是函数 y=log。x,其中a>0(a笋l)是任意对数底;这个函数能够通过Inx由下列公式来表示: hx 102_X=_ 一一1幻a对数函数是主要初等函数之一;它的图形(见图)称为对数曲线(lo孝Lrithnlic cup用). 厂 对数函数的主要性质可由指数函数和对数的相应性质推出;例如,对数函数满足函数方程 Inx+hiy=In x y.对称函数y=inx是严格增函数,并且腼二_*。坑x二一的,腼二_。hix=+的.在每一点x>o,对数函数具有各阶导数,在充分小的邻域内,它可展开为幂级数,也就是说,它是解析函数(analytic ftmction).对于一1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条