1) creep damage factor
蠕变破坏因素,蠕变寿命消耗率
2) creep damage factor
蠕变破坏因素
3) creep life
蠕变寿命
1.
Creep tests of P91 base material and its welds have been carried out,the creep behavior of P91 studied and creep rupture strength extrapolated by the Isothermal and the L-M parameter methods,followed by creep life estimations of P91 fresh steam pipes.
对P91钢母材和焊接接头进行持久试验,研究P91钢的蠕变特性,采用等温线法和L-M参数法对持久强度进行外推,进而对P91钢制主蒸汽管道的蠕变寿命进行估算。
2.
The causes of rigidity change are concluded,and T92 steel s approximate creep life is extrapolated based on rigidity method.
针对T92铁素体钢高温时效后的硬度变化进行了详细的实验分析研究,归纳了硬度变化的原因,并结合实验数据,根据硬度法外推出T92钢的大致蠕变寿命,认为T92钢能够满足超超临界机组600~650℃温度环境下的使用要求。
3.
Multi-axial creep testing methods are generalized,and then the method of how to evaluate the creep life of high temperature components based on creep testing data is presented.
综述了多轴蠕变的试验方法,并推荐了基于试验数据评价工程结构蠕变寿命的参考应力法。
4) creep rupture life
蠕变寿命
1.
Results indicate that the spreading area of the composite solder with 5% Ag particles is largest,the wetting angle smallest,and its creep rupture life longest,which is 23 times more than one of the matrix solder at the same experimental condition.
结果表明:当Ag含量(体积分数)为5%时,复合钎料铺展面积最大,润湿角最小,钎焊接头蠕变寿命最长,比基体钎料提高23倍。
2.
Creep rupture lifetimes of Cu particle enhancement SnPb based composite solder joints and the matrix solder joints are tested under different temperatures and stresses and the creep rupture mechanism is analyzed.
测定不同应力和温度下Cu颗粒增强复合钎料及基体钎料钎焊接头蠕变寿命,分析Cu颗粒增强复合钎料及其基体钎料63Sn37Pb钎焊接头蠕变断裂机理。
3.
The creep rupture lifetimes of Ag particle enhancement SnPb based composite solder joints and matrix solder joints were respectively tested under different temperatures and stresses,and the creep rupture mechanism was analyzed.
测定了不同应力和温度下Ag颗粒增强复合钎料及基体钎料63Sn37Pb钎焊接头蠕变寿命,分析了Ag颗粒增强复合钎料及基体钎料钎焊接头蠕变断裂机理。
5) creep failure
蠕变破坏
1.
Three ways of the creep failure of the papersheet in the constant tensile loads including the creep of elastic failure, the creep of plastic failure, the creep of elastoplastic failure are described in this article.
利用损伤力学理论 ,研究了纸页受力变形时拉伸蠕变破坏的几种典型形式 ,主要包括 :蠕变弹性断裂、蠕变塑性破坏和蠕变弹塑性变化。
2.
The creep characteristics of frozen Lanzhou fine-sand and the impact of load vibration frequency on creep strain and creep failure are examined through a series of creep tests with different vibration frequencies.
通过一系列不同振动频率下的蠕变试验,分析冻结兰州细砂的蠕变变形特性以及频率对蠕变变形和蠕变破坏的影响。
6) creep failure factors
蠕变破坏要素
补充资料:蠕变破坏
分子式:
CAS号:
性质:又称蠕变破坏。材料在正常的拉伸强度下,由于连续地施加应力所引起的断裂。这是由于该材料的黏弹性行为造成的。它和所受应力的大小、环境温度、内部应变大小、有无应力集中等因素有关。在测定材料蠕变断裂全过程所得时间即为蠕变断裂寿命,是材料蠕变、稳定蠕变和加速蠕变三个阶段。当作用应力足够小时,虽经足够长时间而仍不出现加速蠕变的第三阶段,该值即称作持久强度极限。所有这些参数都是温度的函数。温度升高,蠕变断裂寿命缩短,持久强度极限降低。
CAS号:
性质:又称蠕变破坏。材料在正常的拉伸强度下,由于连续地施加应力所引起的断裂。这是由于该材料的黏弹性行为造成的。它和所受应力的大小、环境温度、内部应变大小、有无应力集中等因素有关。在测定材料蠕变断裂全过程所得时间即为蠕变断裂寿命,是材料蠕变、稳定蠕变和加速蠕变三个阶段。当作用应力足够小时,虽经足够长时间而仍不出现加速蠕变的第三阶段,该值即称作持久强度极限。所有这些参数都是温度的函数。温度升高,蠕变断裂寿命缩短,持久强度极限降低。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条