1) creep rupture life
蠕变断裂寿命
1.
In this paper the effect of Ce-La mixed RE content and environment conditions on the creep rupture life of Sn2.
7CuxRE钎料钎焊接头蠕变断裂寿命的影响。
2.
Based on an advanced neural network method and a huge number of creep rupture life data of nickel base single crystal superalloys, an artificial neural network model is constructed to predict creep rupture life for different types of nickel-base single crystal superalloys.
根据大量镍基单晶高温合金在不同温度和应力下的蠕变断裂寿命数据,采用一种先进的人工神经网络方法建立运算模型,对合金在不同实验或运行条件下的蠕变断裂寿命进行了预测,并将测算结果与现有其它方法进行了比较。
3.
Based on experimental data, an artificial neural network method is used to develop a model to predict the creep rupture life of different types of nickel-base wrought superalloys.
在试验数据的基础上,利用人工神经网络建立不同成分镍基变形合金的不同温度,外应力与蠕变断裂寿命之间关系模型,并进行网络训练,对合金的蠕变断裂寿命进行模拟。
2) creep-rupture life
蠕变断裂寿命
1.
The results indicate that proper quantities of Ce can remarkably prolong the creep-rupture life of the Sn3Ag2.
8Cu钎焊接头在室温下的蠕变断裂寿命,Sn3Ag2。
3) creep life
蠕变寿命
1.
Creep tests of P91 base material and its welds have been carried out,the creep behavior of P91 studied and creep rupture strength extrapolated by the Isothermal and the L-M parameter methods,followed by creep life estimations of P91 fresh steam pipes.
对P91钢母材和焊接接头进行持久试验,研究P91钢的蠕变特性,采用等温线法和L-M参数法对持久强度进行外推,进而对P91钢制主蒸汽管道的蠕变寿命进行估算。
2.
The causes of rigidity change are concluded,and T92 steel s approximate creep life is extrapolated based on rigidity method.
针对T92铁素体钢高温时效后的硬度变化进行了详细的实验分析研究,归纳了硬度变化的原因,并结合实验数据,根据硬度法外推出T92钢的大致蠕变寿命,认为T92钢能够满足超超临界机组600~650℃温度环境下的使用要求。
3.
Multi-axial creep testing methods are generalized,and then the method of how to evaluate the creep life of high temperature components based on creep testing data is presented.
综述了多轴蠕变的试验方法,并推荐了基于试验数据评价工程结构蠕变寿命的参考应力法。
4) creep rupture life
蠕变寿命
1.
Results indicate that the spreading area of the composite solder with 5% Ag particles is largest,the wetting angle smallest,and its creep rupture life longest,which is 23 times more than one of the matrix solder at the same experimental condition.
结果表明:当Ag含量(体积分数)为5%时,复合钎料铺展面积最大,润湿角最小,钎焊接头蠕变寿命最长,比基体钎料提高23倍。
2.
Creep rupture lifetimes of Cu particle enhancement SnPb based composite solder joints and the matrix solder joints are tested under different temperatures and stresses and the creep rupture mechanism is analyzed.
测定不同应力和温度下Cu颗粒增强复合钎料及基体钎料钎焊接头蠕变寿命,分析Cu颗粒增强复合钎料及其基体钎料63Sn37Pb钎焊接头蠕变断裂机理。
3.
The creep rupture lifetimes of Ag particle enhancement SnPb based composite solder joints and matrix solder joints were respectively tested under different temperatures and stresses,and the creep rupture mechanism was analyzed.
测定了不同应力和温度下Ag颗粒增强复合钎料及基体钎料63Sn37Pb钎焊接头蠕变寿命,分析了Ag颗粒增强复合钎料及基体钎料钎焊接头蠕变断裂机理。
5) Rupture life
断裂寿命
1.
The effects of temperature and applied stress on rupture life, and the relations of temperature, applied stress and rupture life to characteristic dimensions of coherent phases (γ matrix channel width and rafted γ precipitate thickness), and to the elongation as well as to the cross sectional area reduction of the tested specimens were investigated.
在 760-1050℃和780-115 MPa范围内,选择不同温度和应力配合进行了持久拉伸实验,研究了温度和应力的变化对试件断裂寿命的影响以及温度、应力和断裂寿命与共格相特征尺寸(基体相γ水平通道宽度、筏形析出相γ厚度)和试件延伸率及断面收缩率的关系。
2.
The P92 steel is a steel sort being used for main steam pipelines of ultra-supercritical units at present,its creep rupture life has widely drawn close attention.
P92钢是目前超超临界机组主蒸汽管道的应用钢种,其蠕变断裂寿命被广泛关注。
6) creep rupture
蠕变断裂
1.
The creep rupture properties of a low Re content second-generation directionally solidified superalloy DZ59
低Re含量第二代柱晶高温合金DZ59的蠕变断裂性能
2.
If the creep rupture .
蠕变断裂时间较短时,M23C6碳化物的粗化对性能退化起主要作用,随着时间延长,贝氏体铁素体基体和小岛中的马氏体的回复、再结晶的影响增大。
3.
The interface carbon diffusion,mechanical properties of joints and thermal stress on the interface area have been investigated by means of creep rupture tests,EPMA analysis.
为提高电站锅炉过热器铁素体-奥氏体异种钢焊接接头的高温蠕变断裂强度和延长服役寿命,设计了用专用镍基填充材料焊接的不锈钢-镍基焊缝-耐热钢三元组合接头。
补充资料:蠕变断裂
分子式:
CAS号:
性质:又称蠕变破坏。材料在正常的拉伸强度下,由于连续地施加应力所引起的断裂。这是由于该材料的黏弹性行为造成的。它和所受应力的大小、环境温度、内部应变大小、有无应力集中等因素有关。在测定材料蠕变断裂全过程所得时间即为蠕变断裂寿命,是材料蠕变、稳定蠕变和加速蠕变三个阶段。当作用应力足够小时,虽经足够长时间而仍不出现加速蠕变的第三阶段,该值即称作持久强度极限。所有这些参数都是温度的函数。温度升高,蠕变断裂寿命缩短,持久强度极限降低。
CAS号:
性质:又称蠕变破坏。材料在正常的拉伸强度下,由于连续地施加应力所引起的断裂。这是由于该材料的黏弹性行为造成的。它和所受应力的大小、环境温度、内部应变大小、有无应力集中等因素有关。在测定材料蠕变断裂全过程所得时间即为蠕变断裂寿命,是材料蠕变、稳定蠕变和加速蠕变三个阶段。当作用应力足够小时,虽经足够长时间而仍不出现加速蠕变的第三阶段,该值即称作持久强度极限。所有这些参数都是温度的函数。温度升高,蠕变断裂寿命缩短,持久强度极限降低。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条