1) singular matrix
降秩矩阵
2) singular and nonsingular matrix
降秩与满秩矩阵
3) singular matrix
退化(矩)阵,降秩(矩)阵
4) rank of matrix
矩阵的秩
1.
By means of the rank of matrix, line outspreading, it gives some conditions in which a matrix can decompose to two Kronecker products of matrix.
对矩阵Kronecker积分解进行研究,通过矩阵的秩,行展开等方法,给出了将一个矩阵分解为两个矩阵Kronecker积的若干条件。
2.
In this note,we describe the equivalent propositions on the rank of matrix by determinants,equivalent of matrix,system of linear equations,linear space,linear mapping and so on.
从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题。
3.
Necessary and sufficient conditions for the Frobenius inequality of rank of matrix to be equality are dicussed in this paper,and the characterization of rank of a class of matrix is characterized.
讨论了矩阵秩的Frobenius不等式取等号的充分必要条件,刻画了一类矩阵的秩特征。
5) full rank matrix
满秩矩阵
1.
The way to determine the reflexive g-inverse of full rank matrix A was discussed.
讨论了当矩阵A为满秩矩阵时求其反射g-逆的方法,并将此方法推广,给出当A为非满秩矩阵时求反射g-逆的一般方法,同时对每一种情况给出了具体的算例。
2.
Secondly,the randomly generating of full rank matrix and per-muta.
研究了其它线性分组码用于构造M公钥体制的可行性;分析了M公钥体制中、、是保密的,实现随机选取、、成为了建立M公钥体制的关键;分析了满秩矩阵和置换矩阵的随机产生问题,并得到了一些重要结果;这些结果不仅对M公钥体制是适用的,而且对其它纠错码体制和方案也同样是有用的。
3.
This paper discusses the way about how to get the reflexive general inverse matrix of a full rank matrix A, and generalize this way, gives the general way for not full rank matrix.
讨论了当矩阵A为满秩矩阵时求其广义逆的一种方法,并将此方法推广,给出当A为非满秩矩阵时求其广义逆的一般方法,同时给出算例。
6) rank of a matrix
矩阵的秩
1.
This paper summarizes the applications of elementary transformation of matrix in solving the rank of a matrix or a set of vectors,calculating inverse matrix or system of linear equations,and solving the system of linear equations and the greatest common divisor of polynomials with examples,furthermore,it introduces the thought and application of generalized elementary transformation.
文章总结了初等变换在求矩阵的秩、向量组的秩、逆矩阵,求解线性方程组和多项式的最大公因式等方面的应用,并通过实例加以说明,进而介绍了广义初等变换的思想方法和应用。
补充资料:降秩
1.贬降官秩。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条