说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 秩亏矩阵
1)  rank deficiency matrix
秩亏矩阵
2)  rank deficent matrix
秩亏损矩阵
3)  defective matrix
亏损矩阵
1.
In this paper,the power of a defective matrix in real number field is studied.
研究实数域上亏损矩阵的幂的算法。
2.
This paper extends the generalized spectral decomposition for the defective matrix.
提出了亏损矩阵广义谱分解概念,所得广义特征矩阵具有类似若当链的性质AA(h)i=λiA(h)i+A(h+1)i。
4)  deficient matrix
亏损矩阵
1.
The author defines the generalized 0 ruodangkuai and its power in the paper and by the use of them he probes into the exchange and transmit conditions of the multiplication of deficient matrix.
定义了广义 0 -若当块及其广义幂 ,并以它们为工具 ,探讨了亏损矩阵的乘法可交换条件及其可传递的条
5)  rank of matrix
矩阵的秩
1.
By means of the rank of matrix, line outspreading, it gives some conditions in which a matrix can decompose to two Kronecker products of matrix.
对矩阵Kronecker积分解进行研究,通过矩阵的秩,行展开等方法,给出了将一个矩阵分解为两个矩阵Kronecker积的若干条件。
2.
In this note,we describe the equivalent propositions on the rank of matrix by determinants,equivalent of matrix,system of linear equations,linear space,linear mapping and so on.
从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题。
3.
Necessary and sufficient conditions for the Frobenius inequality of rank of matrix to be equality are dicussed in this paper,and the characterization of rank of a class of matrix is characterized.
讨论了矩阵秩的Frobenius不等式取等号的充分必要条件,刻画了一类矩阵的秩特征。
6)  full rank matrix
满秩矩阵
1.
The way to determine the reflexive g-inverse of full rank matrix A was discussed.
讨论了当矩阵A为满秩矩阵时求其反射g-逆的方法,并将此方法推广,给出当A为非满秩矩阵时求反射g-逆的一般方法,同时对每一种情况给出了具体的算例。
2.
Secondly,the randomly generating of full rank matrix and per-muta.
研究了其它线性分组码用于构造M公钥体制的可行性;分析了M公钥体制中、、是保密的,实现随机选取、、成为了建立M公钥体制的关键;分析了满秩矩阵和置换矩阵的随机产生问题,并得到了一些重要结果;这些结果不仅对M公钥体制是适用的,而且对其它纠错码体制和方案也同样是有用的。
3.
This paper discusses the way about how to get the reflexive general inverse matrix of a full rank matrix A, and generalize this way, gives the general way for not full rank matrix.
讨论了当矩阵A为满秩矩阵时求其广义逆的一种方法,并将此方法推广,给出当A为非满秩矩阵时求其广义逆的一般方法,同时给出算例。
补充资料:誾誾秩秩
1.人才众多貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条