1) Cube Construction Test
立方体构成测验
2) 3 dimensional cube test
三维立方体测验
1.
Study on criterion-related validity of 3 dimensional cube test;
三维立方体测验的效标关联效度
4) Three-dimensional constitution
立体构成
1.
Research on the Teaching Reform of the Course Three-dimensional Constitution;
《立体构成》课程教学的改革与探索
2.
The application of three-dimensional constitution in jewellry design is discussed from formal rule of three-dimensional constitution, constitute element and constitute form.
从立体造型的形式美法则、构成要素及构成形式等方面探讨立体构成在首饰设计中的应用。
3.
The aim of this paper is to reform the teaching methods of three-dimensional constitution to majors in industrial design according to the features of industrial design and the nature of three-dimensional constitution.
立体构成是工业设计的基础。
5) Three-dimensional composition
立体构成
1.
Tow-dimensional composition,color composition and three-dimensional composition,which are the techniques of expression that are most frequently used in the design,are the most basic requirements for the design ability.
平面构成、色彩构成、立体构成是设计过程中运用最频繁的表现手法,也是对设计能力的最基本的要求。
6) three-dimensional construction
立体构成
1.
Three-dimensional construction teaching for the major of garments is discussed,pointing out that the characteristics of three-dimensional construction course should be emphasized aiming at the requirement of garment major in order to found a solid design basis for the students' majoring in garments' design.
针对服装专业的“立体构成”课程教学内容进行了讨论。
2.
The course for a three-dimensional construction of costume,a trunk technical courses in Clothing institutions of higher learning,not only require students to master the basic skills,but need teachers to infiltrate aesthetic into it.
服装立体构成作为服装高等院校的技术主干课程,不仅要求学生熟练掌握基础的技能,更需要教师将美的教育理念渗透于其中,要激励学生用敏锐的眼光寻找美、发现美,用艺术的思维感受美、创造美。
补充资料:Hilbert立方体
Hilbert立方体
Hflbert cube
s沁口目s脚止)).这是一个内容丰富成果丰硕的研究领域. 【AI]中有绝好的介绍及参考文献.1翻卜时立方体〔f口加时。谕.;几几诵epT佃二.钾.,l HIIb叮空间(托1饮成sP别笼)l:的子空间,它的点x一(xl,xZ,…)满足条件0‘x,‘(合)一,,2,·…Hilbert立方体是一个紧统(印代甲aCtllnl),拓扑等价(同胚)于可数多个区间的T叮oHoB积,即毛盯OHo.立方体(T泪如加v CUbe)I从。.这是具有可数基的度量空间类中的万有空间(u苗记岛沮sp即笼)(yP“coH摩粤化定理(Ul笋ohnn毖tri皿山nd笙幻reln)). B .A.nac卜川劝B撰【补注】到山比d立方体的拓扑结构是在无穷维拓扑这一领域内得到研究的(见无穷维空间(而丽记~dinrn-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条