说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 级数求和法
1)  summation of series
级数求和法
2)  the summation for Fourier series
Fourier级数求和法
3)  Extracting the Sum of Unlimited Progression
无穷级数求和法
4)  summation of series
级数求和
1.
In this paper, a method of difference in summation of series is presented.
提出了一种级数求和的差分方法,讨论了差分的相关概念与性质,并应用差分法求某一类数项级数的部分和。
2.
new method of calculating summation of series is constructed by using a set of suitable wave functions in an infinite square potential well of one dimension.
利用一维无限深方势阱中一套适当的波函数,建立了一种新的级数求和方法。
5)  mean summation for Fourier series
Fourier级数平均求和法
6)  The Sum and Its Solution to Power Series
幂级数求和法例谈
补充资料:发散级数的求和


发散级数的求和
summation of divergent series

  就值得研究.若当,1,的时。,有极限 。唤口·“‘’则称级数(*)依算术平均求和法(arithl理tical averages,stunn妞石011 Inet】lodof)是可和的,其和为s,并一记为 么、u*一、(e,1)或 枷s*=s(C,l)·(亦见Ces血ro求和法(Cesaro sUmmation meUleds)). 按照级数和的这种定义,任何收敛级数必可和于它收敛的那个和,此外,存在着依这个方法可和的发散级数.例如级数 l一1十1一1+二依上述方法可和,并且它的(C,l)和等于1/2. 求和法的定义常常适合于那些需要研究的级数.例如,需要一种方法寻求整个级数类的和:它不能与收敛相抵触,也就是说,对于收敛级数而言,它的和就是级数收敛的那个和(见正则求和法(re列ar sum-n祖tionTI祀tllods));最后,对于级数 *凰(““*+““‘)以又U十群V为和的可和性,可由给定的方法,级数 *氰“*与*吝,”*分别以U与V为和的可和性得出(线性性质).也见发散级数(diver罗nt series).发散级数的求和【~t沁Ilof山verg呱series;cyM-、,IIP佣all“e Pacxo八兄川“xc,P,皿0.」 利用求和法(stlll刀刀ation此thods)构造发散级数的j”义和.如果借助确定的规则尸,为级数 艺“、(*) k之笼)指定一个被称为级数和(sum of the series)的数,那么就说该级数依求和法尸是可和的(sulr止浅lb址),其和为s,或者说P可和于和、,这个事实用下述记号中的一种表示: *若。“*一“(p),枷“。一“(p), 尸一】五ns。“s,其中、为级数(*)的部分和、这时,数S也称为级数的尸和(尸一sum).例如,对于级数(.),它的前。项部分和的算术平均值序列毛。。}: 一丛上三土五 n+l
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条