说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 一阶纯谓词演算
1)  pure predicate calculus of first order
一阶纯谓词演算
2)  First-order predicate calculus
一阶谓词演算
3)  pure predicate calculus
纯谓词演算
4)  second-order predicate calculus
二阶谓词演算
5)  predicate calculus of the third order
三阶谓词演算
6)  high-order predicate calculus
高阶谓词演算
补充资料:谓词演算
谓词演算
predicate calculus
    数理逻辑最基本的形式系统。又称一阶逻辑。一个可以回答真假的命题,不仅可以分析到简单命题,还可以分析到其中的个体、量词和谓词。个体表示某一个物体或元素,量词表示数量,谓词表示个体的一种属性。例如用P(x)表示x是一棵树,则P(y)表示y是一棵树,用Q(x)表示x有叶,则Q(y)表示y也有叶。这里PQ是一元谓词,xy是个体,公式"x(P(x)→Q(x))表示每一棵树都有叶子,这里"是全称量词表示“每一个”。公式$x(P(x)∧!!!W0700_1Q(x))表示有一棵没有叶的树,这里$是存在量词,表示“存在一个”。
   除了一元谓词,也可以有二元,三元,甚至多元谓词。事实上,数学中的关系,函数都可以看成谓词 。例如xy可以看成二元谓词,xyz可以看成三元谓词,因此谓词演算的公式可表示数学中的一些命题。例如若用Q(x)表示x是有理数,则公式(*)"x"y(Q(x)∧Q(y)∧xy$z(Q(z)∧xzy))  表示任意两个不相等的有理数中间一定存在另一个有理数。这就是有理数的稠密性。
   谓词可以在一定的个体集合中给出解释,谓词公式可以在这样的个体集合中取到真假值。例如在实数集R中解释Q(x)为x是有理数,则谓词公式(*)取值为真。如果在R中解释Q(x)为“x是整数”,谓词公式(*)就取值为假了。谓词公式在个体集合中取值的严格定义称为基本语义定义,这个定义是波兰籍数学家A.塔尔斯基在20世纪30年代给出的。给定了谓词解释的个体集合称为模型。基本语义定义使谓词公式和模型都可以被当作数学对象加以研究。一个谓词公式在任意一个模型中都取真值,就称之谓恒真式。两个谓词公式A,B在任意模型的任何一种解释下都取相同的值,就称A,B逻辑等价。命题演算中的恒真式和等价式所反映的规律在谓词演算中仍成立。谓词演算中还有一些有关量词的等价式,如:"xP(x)Û!!!W0700_2$!!!W0700_3(x),"x(jψ)Ûj"xψx不在j中自由出现),"x(jψ)?xjψx不在ψ中自由出现)。利用这些有关量词的等价式作等价变换,可以把任何一个谓词公式的量词移到公式的最前面,得到与之等价的前束标准形公式。形如Qx1,Qx2,…,QxnB的公式称为前束型公式,其中Qxi表示$xi"xiB是一个不含量词的公式。
   谓词演算也研究谓词公式的推演。谓词演算自然推演的一些规则为:
   ①全称量词消去
   !!!W0700_4!!!W0700_5
   ②全称量词引入
   !!!W0700_6
   ③存在量词消去
   !!!W0700_7
   ④存在量词引入
   !!!W0700_8!!!W0700_9这些规则中横线上是条件,横线下是结论,j(x)是含自由变元x的谓词公式,y是不在j(x)中出现的变元,c是特定的个体常元,j(y),j(c)是以yc分别代替j(x)中所有自由出现的x得到的谓词公式。与命题公式的推演不同,谓词公式的推演要求条件是恒真式时得到的结论也是恒真式。
   谓词演算也可以公理化。从符号到公式的定义,从公理到推演都严格形式化,构成完全的公理系统,使系统所推演出的都是恒真式,且每个恒真式都能从公理推演出来。与命题演算不同的是,谓词演算是一个不可判定的系统,即不存在一个算法来判定谓词公式是否恒真式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条