1) individual ergodic theorem
个体遍历定理
2) ergodic theorem
遍历定理
1.
Let X be a Banach space,(X,τ) be a locally convex linear topological space,C a τ-sequence compact convex subset of X,and S an asymptotically nonexpansive type semigroups from C onto itself,this paper gives the ergodic theorem of the almost-orbits for asymptotically nonexpansive type semigroups in Banach space X.
X是一Banach空间,(X,τ)是局部凸线性拓扑空间,C是X上的τ-序列紧凸集,S是C上的Γ类渐近非扩张型半群,在一致τ-Opial条件下给出了半群S的殆轨道u的遍历定理。
2.
If the dimension d =1, then the total occupation time is infinite, and meanwhile an ergodic theorem is given.
若底空间维数d=1,它的全占位时为无穷,同时,强遍历定理成立
3.
Under the locally uniform τ-Opial condition,using product topological net,a new convergence condition of X with locally uniform τ-Opial condition is obtained, and give the ergodic theorem and τ-convergence theorem of the almost-orbits for asympotically nonexpansive typesemigroups in Banach space X are given.
然后利用该收敛条件得到了在局部一致τ-Opial条件下的Γ类渐近非扩张型半群殆轨道的遍历定理以及τ-收敛定理。
3) mean ergodic theorem
平均遍历定理
1.
The mean ergodic theorems for square sequence with random weights is obtained by using the method of Fourier analysis and the symmetrization as well as Gaussian randomization.
利用Fourier分析方法已及概率论中的对称化和Gaussian化方法 ,证明了带有随机加权项的平方序列的平均遍历定理 。
4) ergodic convergence theorem
遍历收敛定理
1.
Let X be a Banach space, (X,τ) a local convex linear topological space, C a τ-sequence compact convex subset of X, and T an asymptotically nonexpansive mapping with the property (Γ) from C to itself, we give the ergodic convergence theorem for asymptotically nonexpansive mapping under uniformly τ-opial condition.
在一致τ-opial条件下给出了渐近非扩张映照的遍历收敛定理并进行了证明。
5) Nonlinear ergodic theorem
非线性遍历定理
6) Egrodic retraction theorem
遍历压缩定理
补充资料:个体遍历定理
个体遍历定理
individual ergodic theorem
个体遍历定理〔加山帕面目魄回k山印沈m;“脚脚Bll月,a肠-”明,Pro八职ec盆翻孔OPeMa] 指B扮kl刃订遍历定理工Birkhoff er即画cthe~)及其推广.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条