1) diagonal sum rule
对角求和规则
2) diagonal sum rule
对角和规则
3) sum rule
求和规则
1.
In this paper I would like to discuss the strategy in obtaining analytical formulas of number of spin I states of identical particles,and the relationship between dimension and sum rules for angular momentum couplings such as sixj and nine-j symbols.
结合工作,讨论了3个和4个全同粒子的状态数解析表达式与角动量耦合中的6j和9j系数的求和规则、单轨道中J级对力、核子系统的自旋和同位旋都确定的空间维数等核结构基本理论方面的新进展。
2.
We investigate the properties of polarization vectors for gauge bosons,including their forms with arbitrary polarization direction in laboratory frame,their different sum rules,and the projection operators they constitute.
讨论内容包括极化矢量的具体形式和性质、求和规则和规范传播子之间的关系以及由其张成的投影算子的性质。
4) sum rules
求和规则
1.
We consider the mass dependence on the mixing between a pure glueball and a normal qq meson in QCD sum rules.
在QCD求和规则的框架下考虑了纯胶球和普通介子态的混合效应对二者质量的影响。
2.
The two-point function of the 0++ three-gluon scalar current is calculated byincluding not only the perturbative contribution but also the non-perturbativecontributions of condensates of dimension up to six The QCD sum rules for the0++ three-gluon scalar glueball are deduced in the "zero-width resonance pluscontinuum" model.
在"零宽度共振态加连续谱"的谱函数模型中,得到了0++三胶子标胶球的量子色动力学求和规则,由此定出了该标胶球的质量。
3.
Based on analysing the sum rules in Kramers-Heisenberg dispersion formula, discuss the virtual states to bridge the transition process in SRS and the physical mechanism of SRS.
通过对克雷末斯—海森堡色散公式中求和规则的分析,讨论了虑态在SRS中桥接跃迁过程的作用,从而提出了SRS的物理机制,在此基础上,引进一个假设,建立理论模型,导出了第一阶Stokes光子的速率方程。
5) QCD sum rule
QCD求和规则
1.
The D~+→~■0l~+ν_l decay was researched by means of QCD sum rules.
通过QCD求和规则研究D+→K-0l+lν衰变过程,计算D→K跃迁形状因子,通过构造新的关联函数,消除了twist-3波函数的不确定性对计算结果的影响,使计算结果更精确。
2.
QCD sum rule is an important nonperturbative method in hadron physics,it has been a powerful technique in study of hadron physics and nuclear physics.
简单介绍了QCD求和规则的基本概念、方法与应用,特别讨论了QCD求和规则近年来的发展和与之相关的一些前沿问题。
3.
In this paper, we investigate the instanton effects to the mass of 0 ++ glueball by QCD sum rule approach.
利用包含瞬子效应的QCD求和规则计算了 0 + + 胶球的质量上限 ,结果为 1 3GeV 。
6) GDH sun rule
GDH求和规则
补充资料:Abel-Poisson求和法
Abel-Poisson求和法
Abd - Poisson summation method
A侧一P成胎..求和法【Ab日.lb映明.,.n口.位扣.暇月阂d;A反.一n外曰期.Mer叭cy朋即此all”,] Fourier级数求和法之一函数f任L fo,27r]的Fourier级数在点中上按Abel一Poisson法是可和的(summable by Abel一POisson method),其和为数S,如果 p少犯。f(。,帅·:,其中 ao.畏, f(p,中)=份+乞(a*cosk价+bk sink毋)沪, J、r’丫‘2’昌、一‘一’一r’一‘一’一‘’r’ f(n,叫·士少、t)不痣丽‘(*)如果feC(0,2幻,则对于lz}二lP日,}<1,右边的积分是调和函数,正如5.Poisson所证明的,它是关于圆盘的Diri创et问题的解.所以,Abel求和法(Abel sum-mation method)当应用于Fourier级数时称为Abe卜Poisson求和法,而积分(*)称为PdSS.,积分(Pois-son integral). 如果(P,叻是单位圆内一点的极坐标,则可以考虑当点M(p,价)不是沿半径或切线,而是沿任意路径趋向于边界圆上的一点时函数f印,初的极限.在这种情况下,Schwarz定理(s chwarz theorem)成立:如果f属于L[O,2司且在点钱上是连续的,则、,,恕:.,。)f(。,,)一,伸。)而与点M(p,甲)沿怎样的路径趋向于点P以,叽)无关,只要这一路径保持在单位圆内.【补注】与上述Schwarz定理有关的一个定理是Fatou定理(凡tou theorem):如果f“L[0,2二],则对于几乎所有职。,当M(p,叻沿单位圆内而不与单位圆相切的路径趋向于P(1,肠)时,有 (,.,黔:,,。)f(。,,)一了(,。).见[A2],Pp.1 29一1 30.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条