1) Borel sum rule
Borel求和规则
2) sum rule
求和规则
1.
In this paper I would like to discuss the strategy in obtaining analytical formulas of number of spin I states of identical particles,and the relationship between dimension and sum rules for angular momentum couplings such as sixj and nine-j symbols.
结合工作,讨论了3个和4个全同粒子的状态数解析表达式与角动量耦合中的6j和9j系数的求和规则、单轨道中J级对力、核子系统的自旋和同位旋都确定的空间维数等核结构基本理论方面的新进展。
2.
We investigate the properties of polarization vectors for gauge bosons,including their forms with arbitrary polarization direction in laboratory frame,their different sum rules,and the projection operators they constitute.
讨论内容包括极化矢量的具体形式和性质、求和规则和规范传播子之间的关系以及由其张成的投影算子的性质。
3) sum rules
求和规则
1.
We consider the mass dependence on the mixing between a pure glueball and a normal qq meson in QCD sum rules.
在QCD求和规则的框架下考虑了纯胶球和普通介子态的混合效应对二者质量的影响。
2.
The two-point function of the 0++ three-gluon scalar current is calculated byincluding not only the perturbative contribution but also the non-perturbativecontributions of condensates of dimension up to six The QCD sum rules for the0++ three-gluon scalar glueball are deduced in the "zero-width resonance pluscontinuum" model.
在"零宽度共振态加连续谱"的谱函数模型中,得到了0++三胶子标胶球的量子色动力学求和规则,由此定出了该标胶球的质量。
3.
Based on analysing the sum rules in Kramers-Heisenberg dispersion formula, discuss the virtual states to bridge the transition process in SRS and the physical mechanism of SRS.
通过对克雷末斯—海森堡色散公式中求和规则的分析,讨论了虑态在SRS中桥接跃迁过程的作用,从而提出了SRS的物理机制,在此基础上,引进一个假设,建立理论模型,导出了第一阶Stokes光子的速率方程。
4) QCD sum rule
QCD求和规则
1.
The D~+→~■0l~+ν_l decay was researched by means of QCD sum rules.
通过QCD求和规则研究D+→K-0l+lν衰变过程,计算D→K跃迁形状因子,通过构造新的关联函数,消除了twist-3波函数的不确定性对计算结果的影响,使计算结果更精确。
2.
QCD sum rule is an important nonperturbative method in hadron physics,it has been a powerful technique in study of hadron physics and nuclear physics.
简单介绍了QCD求和规则的基本概念、方法与应用,特别讨论了QCD求和规则近年来的发展和与之相关的一些前沿问题。
3.
In this paper, we investigate the instanton effects to the mass of 0 ++ glueball by QCD sum rule approach.
利用包含瞬子效应的QCD求和规则计算了 0 + + 胶球的质量上限 ,结果为 1 3GeV 。
5) GDH sun rule
GDH求和规则
6) QCD sum rules
QCD求和规则
1.
Motivated by the recent BES observation of the p(p) enhancement near threshold in radiative J/ψdecays,X(1860) and X(1835),we choose the 0~(-+) trigluonium state as a possible candidate and calculate its mass with QCD sum rules,which is found to be approximately in the region between 1.
针对这一发现,提出了新粒子的三胶子胶球态解释方案,并且应用QCD求和规则计算了此胶球态的质量。
2.
In this paper we calculate the normalization constants mp_ 0π and mp_ 0K of the twist-3 distribution amplitudes of the pion and kaon from the QCD sum rules,instead of using the equations of motion.
用QCD求和规则计算了π介子和K介子的两个twist3分布振幅的归一化常数mp0π和mp0K。
补充资料:Borel求和法
Borel求和法
Borel summation memed
B.rel求和法[B.rel~m浦皿methed;励衅.~叭cy加..p佣...川 函数项级数求和法之一,是E.Borel(【11)提出的.假设给定数项级数 艺a*,(*) k=0S。是它的部分和,S是一个实数.如果 、。一浸共s,一、, .二蕊一昌k!一“则称级数(*)珍Borel褚(B一me‘hod)是可和的,其和为数5 .Borel还提出一种积分求和法,即B‘法:如果 军_.畏ak砂.- 户e一“yse共-,~du二S. 石一昌k!则称级数(*)按B‘法是可和的,其和为数5.使得B法和B‘法等价的条件,见[2] .B法的产生同在一点上正则的函数的解析开拓有关.设函数 f(z)=艺‘“” 月=0在点O处是正则的,C是它的所有奇点的集合.通过每一点P任C,作线段OP,以及过点尸且垂直于OP的直线L,.对于每一条直线L,,与点O处于同一侧的点的集合记作n;这时,区域n的边界r称为函数f(z)的Borel多边形(Borel poly即n),而区域n则称为它的内部.下述定理成立:级数 艺a,z” 月=0在区域n中可用B‘法求和,而在与n相补的区域n‘中不可用B‘法求和(〔2]).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条