说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 成集体正规空间
1)  collectionwise normal space
成集体正规空间
2)  Hereditarilyσ-collectionwisδ-normal spaces
遗传σ-集体δ-正规空间
3)  collectionwise D-normal space
集态D-正规空间
1.
In this paper,we introduce and investigate collectionwise D-normal spaces,which strictly exists between perfect and D-normal spaces.
引入并研究了一类严格介于完备空间与D-正规空间之间的空间———集态D-正规空间,证明了空间X是集态D-正规空间当且仅当X是集态δ-正规且D-正规的。
4)  normal space
正规空间
1.
In this paper, we have proved the following theorem: if X is normal and morita space and Y is σ-space then Xxy is subnormal spac
本文证明了如下一个定理:设X是正规Morita空间,Y是σ-空间,则X×Y是次正规空间。
2.
It is proved that if R any ring and N(R) is a prime radical of R,then R/N(R) is a strongly Harmonic ring if and only if [Specl(R),Γ2(R)] is a normal space.
对任意环R,用N(R)表示环R的素根,证明了:R/N(R)是强Harmonic环当且仅当[Specl(R),Γ2(R)]是正规空间。
3.
in this paper, We have studied the associated feature of metrization about normal space,and have given a proof about the generalization of urysoho throrem.
对正规空间度量化的相关特征进行了探讨 ,并给出了Urysoho定理的一个推广及证
5)  Normal spaces
正规空间
1.
This paper gives a kind of special normal spaces—completely normal spaces,and discusses its nature.
给出了一类特殊的正规空间———完全正规空间 ,并讨论了它的性质 。
6)  regular space
正规空间
1.
The extension theorems of mapping from regular space to basic square bodies are proved.
证明了从正规空间到基本方体映射的两个扩张定理。
补充资料:成集
1.汇编成集子。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条