说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 渐近有效估计量
1)  asymptotically efficient estimator
渐近有效估计量
2)  Bahadur efficiency
Bahadur渐近有效估计
1.
Based on some smooth conditions, the Bahadur bound for this distribution family is derived, and a definition of Bahadur efficiency is proposed.
基于一定的光滑性假设,得到了这种双边截断分布族的Bahadur界,并因此给出了该分布族中相合估计为Bahadur渐近有效估计的定义。
3)  asymptotically efficient estimate
渐近有效估计
1.
In this paper,we discuss the sufficient and complete statistic of negative binomial distribution,and obtain the uniformly minimum variance unbiased estimator with unknown parameter θ through discusslon of cramer Rao inequality and the below bound of the unbiased estimate,it is proved that unique UMVU estinote of the parameter θ is asymptotically efficient estimate.
通过讨论负二项分布族的充分完备统计量 ,可给出未知参数θ的一致最小方差无偏估计 ,并通过Cramer Rao不等式及其无偏估计下界的讨论 ,证明了θ的惟一的UMVU估计是渐近有效估
2.
In this paper,we construct the asymptotically efficient estimates for location parameter θ in the family {1τf(x-θτ)|θ∈R,τ>0
本文对单边截断型分布族{1τ∫(x-θ)τ)dx|θ∈R,τ>0},构造了位置参数θ的一类渐近有效估计和自适应估
4)  asymptotic unbiased estimator
渐近无偏估计量
5)  asymptotic property of estimator
估计量渐近性质
6)  asymptotic formulae
渐近估计
1.
On the asymptotic formulae of approximation of unbounded continuous functions;
关于无界连续函数逼近的渐近估计
2.
By using multiplier-enlargement,the asymptotic estimation of approximation of unbounded continous functions with positive linear operaters is discussed, with general asymptotic formulae given.
利用扩展乘数法讨论了线性正算子改造为逼近无界连续函数的渐近估计,给出了具有一般性的渐近 公式。
3.
By using of the method of multiplier-enlargement, discusses the asymptotic estimation of approximation for unbounded continuous functions of several variables by linear positive operators defined on k-dimensional Euclidean space, and gives general asymptotic formulae.
利用扩展乘数法讨论了高维欧氏空间上线性正算子改造为逼近多元无界连续函数 的渐近估计,给出了具有一般性的渐近公式。
补充资料:超有效估计量


超有效估计量
upereffitient estimator $, hyperefficient estimator

超有效估计量f匀那曰re伍d印t巴血舀奴或h只尤肥伍cjentestilnator:cBepx,帅e俐Bu明o”eUKal 术语“超有效估计量序列”的通用简称,指比未知参数的相合最大似然估计量序列好(更有效)的、相合渐近正态估计量序列. 设X,,二x,是取值于样本空间(王,才,尸,)(口〔0)的随机变量.假设对于分布族{尸。},存在参数口的相合最大似然估计量J。一J。(x、,…,xn)的序列冲。}.其次,设{兀圣是参数口的渐近正态估计量瓦二兀(Xl,…,X,.)的序列.假如对于一切0〔0、有 、〔,,。。(工,一。),z、不共, 厂一1一fIL,-一‘·”I(的’其中I(的是F泪阮r信息量(Fisher~unt ofi刊陌~-tion),并且至少在一个点口‘(0“O),满足严格不等式 *。。.【n(兀一。·)2]<一早万,(.) I(口)则称序列{下,圣关于平方损失函数为超有效的(supe卜efficient),而使(*)式成立的点扩称为超有效点(pointof su详reffieiell卿)·
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条