说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 统计估值
1)  statistical estimation
统计估值
2)  statistical estimated value
统计估计值
3)  statistical estimative theory
统计估值理论
4)  Estimators of noise statistics
噪声统计估值器
1.
In this paper a kind of new estimators of noise statistics and adaptive filters of states are put forward in the case that input and output noises of systems are correlative.
本文在系统输入和输出噪声相关的条件下,提出一种新的噪声统计估值器和自适应状态滤波器,应用表明了它的有效性。
5)  Estimator of the variation noise
时变噪声统计估值器
6)  estimator of the noise statistics
噪声统计信息估值器
补充资料:统计估计


统计估计
statistical estimation

  统计估计[咖位垃川硬范nutijl;e~e,,ee劝eo”eu。-B明”e} 数理统计的基本部分之一,研究根据随机观测结果估计其分布的各种特征. 例1.设X,,…,茂是独立随机变量(观测结果),其在直线上的共同分布尹为观测者所未知.设代是经验(样本)分布,它赋于每个随机点x以权重1/。,则气‘是尹的统计估计量(statistiG习esti-mator).经验矩 一介“‘一青‘如是矩,,一丁二“L,的估,。量·特另。地, 了二生夕x n‘了l是均值的估计量,而 护一生夕(x_一乃, n,瞥l、是方差的估计量、 基本概念.在一般估计理论中,X的观测值是取值于可测空间(王,鱿)的随机元(份11dome」en犯11t),其未知分布属于给定的分布族P.分布族总是可以参数化并巨表示为{巧:口任O).这里假设对参数的依赖形式及集合O已知.由观测值X估计未知参数日或函数g在点夕处的值g(6),在于构造一观测值的函数日‘(X),使其能充分好地逼近口或g(的. 估计量的比较以如下方式进行.假设在集合Ox。(或夕(0)x夕(。))上给定一非负损失函数w。‘,yZ),其含义是:在实际参数为口时,采用估计量扩造成的损失为w(犷;0).对于给定的损失函数w,人们用平均损失,即风险函数R*(口‘:口)“E。、(口‘、口)作口的估计量口’之优劣的度量.这样,在估计量的集合上引进了半序:估计量T、优于估计量兀,如果R、(T、;日)簇R*(T2;日).特别地,参数6的估计量T(关于损失函数、)称为不容许的(inadi面esible),如果存在估计量T’,使对于一切O任0,有R、(T’;0)乓R*(T;因,并且至少对某口有严格不等式.在估计量质量的这种比较方式下,结果许多估计量是不可比的,况且损失函数的选取在很大程度上是任意的. 有时可以在某个更窄的估计量类中找到最优估计量.无偏估计最(unbi朋ed cot如ator)就是重要一类估计量.假如所作试验关于某个变换族是不变的,则自然局限于考虑不破坏问题对称性的估计量(见同变估计量(明,l论riantes石俄吐。r”. 可以按估计量在“不良”点的性质对其进行比较:称口的估计量T0关于损失函数w为极小化极大估计量(~巴石叮么tor),如果 s笋R·(T0;0)一平s护R,(T;口),其中下确界对一切估计量T=T(X)来求. 在估计问题的】3a邓提法中(见物衅方法(Ba-卿灿approacll)),未知参数视为随机变量,它在O上有先验分布(a priori dis饭buljon)Q.在这种情形下,关于损失函数w的最优估计量T0由以下关系式确定二 :*(几)一。。(:;。)一丁〔。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条