说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 熵估计值
1)  entropy estimation
熵估计值
1.
The final coding bit-plane can be estimated by the entropy estimation of the DWT coefficients,and also the significant coefficients can be defined and the lifting value can be determined.
根据图像小波域系数的熵估计值确定正常编码情况下图像编码所截取到的比特平面,然后对重要的系数进行比特平面提升,这样系统编码时就能够保留更多的小目标信息。
2)  entropy spectral estimation
熵谱估计
1.
Based on linear prediction theory, an optimal method for reflection coefficient estimation is proposed and simultaneously the performance of the algorithm is also analyzed by adopting entropy spectral estimation.
基于观测数据特征结构的考虑,在针对性分析传统参数谱估计方法的基础上结合线性预测理论提出了参数模型反射系数估计的优化方法,以熵谱估计的形式对算法作了进一步研究,并通过仿真实验验证了优化算法的改善性能及工程可实现性。
3)  approximate entropy
估计熵
1.
In this paper, a filtering approach based on approximate entropy is presented according to the non-linear, non-steady and dispersing of economic time series and the limitations of traditional filtering approaches and by the use of elemental characteristics of approximate entropy.
根据经济时序的非线性、非平稳性和离散性及传统时序滤波方法在经济时序滤波应用中存在的局限性,应用估计熵的基本特性,提出一种基于估计熵的滤波方法·探讨了该滤波方法的原理和应用过程,并以实际的GDE时序为例,做出该滤波方法的案例分析·案例分析表明,基于估计熵的滤波方法比传统的时序滤波方法有较好的滤波效果。
4)  entropy estimate
熵估计
5)  Maximum entropy estimation
最大熵估计
6)  Maximum Entropy Inference
极大熵估计
1.
Estimating Mixed Nash Equilibrium Employing Maximum Entropy Inference;
纳什均衡策略的极大熵估计方法
补充资料:极大熵谱估计
      估计平稳随机过程功率谱密度的方法,这种方法在外推时能使自相关函数在未知点的取值具有最大统计自由度。J.P.伯格于1967年首先提出这种方法并把它称为极大熵谱估计。极大熵谱估计最初应用于地球物理学领域地震记录数据的分析,后来在雷达、声纳、图像处理、语言分析以及生物医学等领域都有广泛的应用。
  
  在统计学中,熵是对各种随机试验不确定程度的一种度量。概率分布的熵越大、试验的可能结果越不确定。伯格的思想是要在外推相关函数的每一步,都既能保证相关函数的已知部分不变,又能在新增加外推值之后使概率分布具有最大的熵;也就是在每步外推时不对未知点处自相关函数取值施加任何限制(即其取值具有最大统计自由度,不对它强加任何条件)。极大熵谱估计的这种特点能克服传统的功率谱估计方法分辨率不高的弱点。在理论上,过程的功率谱是自相关函数的傅里叶变换。传统的功率谱估计方法是将样本自相关函数乘以某种窗函数(即对自相关函数加权),然后再作傅里叶变换。窗函数可以增加谱估计的稳定性并减少谱的泄漏,但窗函数会限制谱的分辨力。传统方法存在的问题实际上是由于它把没有观测到的数据(或其自相关函数)都看作为零,同时对已知部分的信息加以人为修改(加权)而引起的。而极大熵谱估计对已知的最大迟延以外的自相关函数进行合理的外推,因而能提高所求功率谱的分辨力,特别是在已知数据量较少时,其效果比传统方法更优。
  
  假设一个平稳正态过程自相关函数的前N+1个迟延点的值r(0),r(1),...,r(N)已确知,需要求r(N+1)的值。以r(0),r(1),...,r(N+1)作为相关函数,则对应的N+2维正态分布的熵为
  
  其中R(N+1)为相关阵:
  
  因此使熵为最大就相当于使行列式 det[R(N+1)]为最大。可以使det[R(N+1)]对r(N+1)的偏导数为零,求出r(N+1)。将得到的r(N+1)代入R(N+2),同理可根据使det[R(N+2)]为最大的条件求出r(N+2)。再把求到的r(N+1)和r(N+2)代入R(N+3)中的相应元素,对det[R(N+3)]求极大可得到r(N+3),依此类推。
  
  与这种方法得到的自相关函数所对应的功率谱为
  
  式中i=刧,Δt是x(t)的采样间隔,ω为频率,M+1为递推次数,而A屌(a0,...,aM)T中各元素可由R(M)A=(1,0,...,0)T 求得,T表示转置。
  
  实际计算时,由于只掌握x(t)的有限记录而无法得知自相关函数的精确值,因此只能用它的估计值替代。伯格在求取r和A(参数向量)的估值方面还提出一种递推算法,它可以避免矩阵求逆,充分利用数据所提供的信息,而且递推过程每步所对应的行列式detR都是非负定的。后来又有其他学者提出新的算法,克服伯格算法中的缺点(如所谓谱线分裂和谱峰漂移),但算法的变化并不改变极大熵的原则。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条