1) profile curve
轮廓曲线;剖面曲线
2) outline curve
轮廓曲线
1.
Double circular appoximating algorithm of outline curve;
轮廓曲线的双圆弧逼近算法
2.
Spectrum analysis of outline curve of body surface of earthworm and statistical model
蚯蚓体表轮廓曲线谱分析及统计模型
3.
Research on design method of a cam outline curve based on AutoCAD
基于AutoCAD的凸轮轮廓曲线设计方法研究
3) curve contour
曲线轮廓
1.
For machining sine-function curve contour,general using line or arc line to in NC,this paper briefly introduces approaching methods and programming,according to calculation of approaching node and approaching inaccuracy.
对于加工正弦函数曲线轮廓,一般要采用直线段逼近或圆弧段逼近的方法来实现加工。
4) contour curve
轮廓曲线
1.
Design of cam contour curve based on CAE technique;
基于CAE技术的凸轮轮廓曲线设计
2.
Designing and drawing contour curve of periphery cam with AutoCAD VBA;
用AutoCAD VBA设计盘形凸轮的轮廓曲线
3.
Cubic NURBS expression for contour curves of parallel indexing cam
平行分度凸轮轮廓曲线的三次NURBS表示
5) Profile curve
轮廓曲线
1.
This paper carried out a CAD animation design on cam profile curve of the cam mechanism with Oscillating Roller follower by using instantaneous velocity center on AutoCAD, so as to obtain cutter center track for milling disk-cam and pressure angle at any point of the profile.
在AutoCAD基础上利用速度瞬心进行摆动滚子从动件凸轮机构轮廓曲线的CAD动画设计 ,同时可以生成刀具中心的加工轨迹、计算出压力角 ,能够实现CAD/CAM一体化 ,是一种简捷实用的新方法 ,可以直接应用于生产实际和教
2.
This article introduces the computer-aided design method of the profile curve in parallel dividing cam with VB and the method how to draw the parallel dividing cam profile curve with AutoCAD in VB environments,and calculates the design error of the parallel dividing cam.
介绍了基于VB的平行分度凸轮轮廓曲线的计算机辅助设计,通过调用MATLAB实现了平行分度凸轮轮廓曲线设计误差的估计,介绍了在VB中调用AutoCAD绘制平行分度凸轮工作轮廓曲线的方法。
6) The plane profile curve
平面轮廓曲线
补充资料:Hesse曲线(代数曲线的)
Hesse曲线(代数曲线的)
Hessian (algebraic curve)
11油限曲线(代数曲线的)【H台自11(.妙如允.抖e);recc咖,T~aaa,即r药pa一吸ee二o‘二p.助蓝] n次代数曲线(司罗玩水c~)的He丈祀曲线就是其极二次曲线能分裂为两条直线的点的集合,也是第一极曲线的二重点构成的集合.n次非奇异曲线的He丈七曲线是一条次数为3伪一2)、类为3(n一2)(3n一7)的曲线.设介O是这条n次曲线的齐次坐标方程,关丘=刁:f/刁xi刁、,则它的He丈犯曲线的定义方程为 !不:关:五,} }五:关:五31=0. }人,人2人3}特征不等于3时的三次非奇异曲线的H既七曲线与这条曲线交于9个通常拐点.因O.H改e(l 844)而得名. A .E.H困阳。B撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条