说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 单侧函数
1)  one-sided function
单侧函数
2)  one-sided dyadic CMO function
单侧二进CMO函数
1.
Then according to the definition of homogeneous Morrey-Herz spaces,some boundedness results are established for the commutators generated by the fractional Hardy operators and one-sided dyadic CMO functions on homogeneous Morrey-Hera spaces.
得到类分数次Hardy算子和单侧二进CMO函数所生成的交换子在齐次Morrey-Herz空间上一些有界性结果。
2.
Then Combining the definition of homogeneous Morrey-herz spaces,some boundedness results are established for the commutators generated by the fractional Hardy operators and one-sided dyadic CMO functions on homogeneous Morrey-herz spaces.
先介绍了一类分数次Hardy算子及交换子的概念,然后再结合齐次Morrey-Herz空间的定义,得到此类分数次Hardy算子和单侧二进CMO函数所生成的交换子在齐次Morrey-Herz空间上一些有界性性结果。
3)  unilateral derivative
单侧导数
1.
Unilateral Derivative and Its Effects on the Property of Function;
单侧导数及其对函数性态的影响
2.
The generalized Law of Mean with unilateral derivative and its asymptotic features of the “centred dot” are studied.
本文研究了单侧导数的广义中值定理及其“中间点”的渐近性质 ,进而获得了更广泛的结果。
3.
By means of the unilateral derivative being a little less than conditions,not derivative,it is dicussed that the monotonously of function is differented.
讨论了不用导数 ,而用较弱的条件单侧导数也能判别函数的单调性问
4)  one-sided derivative
单侧导数
1.
The decision methods that the function is derivable in the origin and the simple methods to find a functionl one-sided derivative are given in this paper.
给出了函数在原点可导的判定方法及求函数单侧导数的简便方法,并给出了这些方法的应用例子。
2.
It associates one-sided derivative with symmetric derivative to discuss the functional convex, whose condition is weaker than present reference.
把单侧导数与对称导数结合起来,以更弱的条件讨论函数的凸性,给出了凸函数的一个充要条件。
5)  Single Side Derivative
单侧导数
1.
Single side Derivative and the Single side Limit of the Derivative are the two important concepts in calculus.
单侧导数与导数的单侧极限是微积分中两个重要概念,在求分段函数的导数,付里叶级数中都有其广泛的应用,本文讨论了这两个概念的关
6)  lateral range function
侧射程函数
补充资料:单侧曲面与双侧曲面


单侧曲面与双侧曲面
one - sided and two - sided surfaces

单侧曲面与双侧曲面(帐.幼山月.砚加。一浦山吐,叮肠。污;o月.oc”POHHNe.刀”yc功PollH“e no.epxltocT.) 以不同的方式放置于外围空间中的两类曲面(单侧放置(one一sid留泌ition)和双侧放置(t场U.si山刘p沈i石on)).例如,柱面是双侧曲面,而M施如带(M冬biuss州P)是单侧曲面.这两类曲面之间的特征区别是,柱面的边界由两条曲线组成,而M6bi留带的边界是单独的一条曲线.在封闭曲面中,球面(sPhere)和环面(torus)是双侧的,而X】曲1曲面(Kleins班鱼沈)是单侧的.作为双侧放置和单侧放置的例子,可以引用圆周在M6blus带中的嵌人.这样,圆周“(见图)是单侧曲线,而圆周刀是双侧曲线(一般说来,任何无定向道路(d留丽enii飞path)单侧地落在曲面中). 霍重)薰黔 更确切地说,单侧曲面和双侧曲面是以不同的方式嵌人在(维数高过1的)外围空间中的两类流形.双侧性和单侧性与可定向性和不可定向性(见定向(。山nta石on))有关,但是它们不是曲面的内在性质,而依赖于外围空间.例如,存在可定向的双侧曲面:梦C=夕,护C=R,;不可定向的双侧曲面:’R尸ZxOCR PZ xs,;可定向的单侧曲面:尹二S,xs,c= RPZx夕;不可定向的单侧曲面:R尸,CR尸(这里,梦是球面,产是环面,R尸“是射影平面,RP3是射影空间,夕是R尸上迷失方向的路径). 在可定向空间(例如,R”)中一个超曲面是可定向的,当且仅当它是双侧的. 假定一个法向量沿着浸人在某个空间中的光滑曲面上一条闭曲线移动,并保持它是曲面的法向量.如果不管如何选择闭曲线,当回到出发点时法向量的指向与它原来的指向总是一致的,则称该曲面是双侧的(t认。一sid记);反之,则称它为单侧的(o优一51山沮).更一般地,曲面n是双侧放置的当且仅当它的法丛(nonl以1 bundk)是平凡的(在这个丛里存在一个非零截面).反之,单侧曲面的法丛是非平凡的:在n上存在一条曲线使得法丛在它上面的限制是一条M6bius常. 空间N”中每一个(超)曲面M”一’在局部上都把尸分成两部分,即任意一点x任M月一’C=N“有一个邻域U cN,使得U由两个分支U’和U“组成,而U门M“一’属于它们的公共边界.在另一方面,M”一’在N”中的充分小邻域(如果M在N中是封闭的)或者是一个分支,或者有两个分支,其边界包含M在内.在第一种情形,(超)曲面M”一’也称为单侧的(one-51山沮),在第二种情形,称为双侧的(腼、51山过).因而,虽然曲面在局部上是双侧的,但是在大范围上它可能是单侧的.反过来,双侧曲面未必分隔它在空间中的邻域. 对于落在N“+’中的双侧曲面M”,任意一条封闭曲线:与M”在N”十’中的相交指数(同调论中的)(运如加叨。n in(七x(in holnofogy))满足方程(:,M”)二Olllod 2.但是,如果M”是单侧的,则对某条曲线:日丫+’(:,M·)笋0.这个事实(与法向量的移动及邻域的分隔一起)也能取作单侧性和双侧性的定义.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条