2) discrete Fourier series algorithms
离散傅里叶级数算法
3) discrete Fourier series
离散傅立叶级数
1.
Taking discrete Fourier series and Fourier Transform of periodic sequence as an example,this paper expounds how to simplify those abstruse theory by using straightforward mathematical knowledge which students are well-informed.
本文以周期序列的离散傅立叶级数和傅立叶变换的推导为例,就教师如何用简单的或学生所熟悉的数学知识,进行深入浅出的教学进行了探讨。
4) discrete Fourier series representation of discrete-time periodic sequences
离散时间周期序列的离散傅里叶级数表示
5) fourier series
傅里叶级数
1.
Approaching to periodic square wave signal on three dimension with finite Fourier series;
用有限项傅里叶级数三维趋近周期性方波信号
2.
Dynamic Phasor Modeling Based on Fourier Series;
基于傅里叶级数的动态相量建模法
3.
Dynamic Demonstration of “Fourier Series Partial Sum Approaching Sum Function”;
“傅里叶级数部分和逼近和函数”的动态演示
6) discrete fractional Fourier transform
离散分数傅里叶变换
1.
Digital Watermark Algorithm Based on M-cycle Discrete Fractional Fourier Transform;
基于M周期离散分数傅里叶变换的数字水印算法
2.
The discrete fractional Fourier transform is a generalization of discrete Fourier transform,This paper extends the discrete fractional Fourier transform to multiple-parameter discrete fractional Fourier trans- form which have N order parameter,and applies it into digital image encryption and decryption.
离散分数傅里叶变换是离散傅里叶变换的推广,文中将离散分数傅里叶变换推广到了带有N个参数的多参数分数傅里叶变换,并将它应用于数字图像加密解密过程中。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条