1) fine structure of spectral line
谱线精细结构
2) Hg-green hyperfine structure
Hg绿谱线超精细结构
3) finestructure
(光谱线的)精细结构
4) fine-structure broadening
精细结构谱线展宽
5) hyperfine structure of spectral line
光谱线超精细结构
6) optical fine structure
光谱精细结构
1.
The unknown optical fine structure,electron paramagnetic resonance(EPR) spectra(zero-field.
2H2O晶体的光谱精细结构和电子顺磁共振(EPR)谱(零场分裂D和顺磁g因子)。
补充资料:超精细结构
超精细结构 hyperfine structure 由于核磁矩和核电四极矩引起的原子能级和光谱的多重分裂,须用分辨本领很高的分光仪器观测。许多核具有自旋I,伴随之具有磁矩。核磁矩与电子之间的相互作用造成能级分裂。核磁矩很小,能级的分裂也很小。超精细结构能级由电子总角动量量子数J、核自旋I和包括核自旋的总角动量量子数F来标记。能级间隔遵从类似的朗德间隔定则。许多核还有电四极矩,核电四极矩与电子在核处所产生的电场梯度相互作用引起能量的微小改变,叠加在磁矩引起的超精细结构上,使分裂偏离朗德间隔定则。能级的超精细结构造成光谱线的超精细结构。根据实验测得的光谱线的超精细结构,可以确定原子核的自旋和电四极矩。因原子核同位素质量不同而观察到的光谱多重结构称为同位素效应,不属于超精细结构,它只造成谱线的平移,不影响超精细结构的能级间隔。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条