1) thermoelastic
热弹性的
2) thermo-elasto-plastic
热弹塑性
1.
The Finite Element Method to the Thermo-elasto-plastic Problems of Shell Structures;
壳体热弹塑性问题的有限元求解方法
2.
The temperature and stress-strain field of steel plate runout table cooling are simulated using thermo-elasto-plastic finite element method.
针对钢板冷却发生翘曲变形的问题,利用热弹塑性有限元法对中厚板冷却过程的温度场及应力应变场进行数值模拟。
3.
The property thermo-elasto-plastic properties of the rock under the high temperature are analyzed and researched in this paper.
分析研究了岩石在高温高压作用下的热弹塑性力学特性,研究了岩石的加、卸载过程,根据损伤力学的基本理论,推导了温度作用下的岩石热弹塑性力学特性本构方程。
3) thermo-elastic-plastic
热弹塑性
1.
Analysis of thermo-elastic-plastic creep of pressure vessels at high temperature;
高温条件下压力容器热弹塑性蠕变分析
2.
Based on the theory of thermo-elastic-plastic,changes of material properties with temperature were considered,and the strain-stress-temperature coupling constitutive equations on thermo-elastic-plastic of flexural reinforced concrete members were deduced.
在热弹塑性理论的基础上,考虑了材料性能随温度的变化,导出了钢筋混凝土受弯构件热弹塑性问题的应力-应变-温度耦合本构方程。
4) thermal elasto-plastic
热弹塑性
1.
A thermal elasto-plastic contact model which can take into account the effects of temperature-dependent yield strength was developed by using finite element method.
应用有限元方法建立了可考虑屈服应力温度相关效应的粗糙表面热弹塑性接触模型。
2.
A spacial axisymmetric finite element calculational model is established to calculate temperature rise and thermal stresses during static laser heating of a metal plate by using thermal elasto-plastic constitutive relation and incremental FEM.
使用热弹塑性本构关系和增量有限元法,建立了激光静态加热金属板的空间轴对称有限元计算模型,计算了金属受激光加热过程中温升和热应力,分析了在激光加热过程中热膨胀和热软化的共同作用对于热应力的影响,提出了“环箍效应”解释高斯激光束导致的热应力分布的特征。
5) Thermal Elastoplastic
热弹塑性
1.
The thermal elastoplastic finite element method is used to analyze deformation characteristics of the welding beam.
主要基于ANSYS软件,采用热弹塑性有限元法分析了焊接时梁的变形情况,并进行了试验研究,所得结果吻合很好,为大型薄壁结构的焊接变形预测提供了有价值的数据和方法。
6) thermoelasticity
热弹性
1.
Thermoelasticity effect on Si film irradiated by ultra-short pulse laser;
超短脉冲激光辐照硅膜的热弹性
2.
Investigation of the Heat Conduction and Thermoelasticity for Functionally Graded Material Plates
功能梯度材料板热传导及热弹性研究
3.
Starting from the goveming equation for the thermoelastic field of functionally gradient material,this paper shows that the functional for the problem of three-dimensional quasistaic thermoelasticity exists when the material propenies are only described by a function of the coordinates.
本文从梯度功能材料拟静态热弹性问题的控制方程出发,说明了梯度功能材料在其物性系数为坐标变量的函数时的三维拟静态热弹性问题的泛函是存在的,导出了相应的泛函,并建立了相应的变分原理。
补充资料:弹—塑性变分原理
弹—塑性变分原理
elastic-plastic variational principle
tan一suxing bionfen yuanll弹一塑性变分原理(elastie一plastic variation-al Principle)适于弹一塑性材料的能量泛函的极值理论。包括最小势能原理和最小余能原理。塑性加工力学中常用最小势能原理。变形力学问题的能量解法和有限元解法都基于最小势能原理。最小势能原理有全量理论最小势能原理和增量理论最小势能原理。 全量理论最小势能原理在极值路径(应变比能取极值的路径)下运动许可的位移场u‘中,真实的位移和应变使所对应的总势能取最小,即总势能泛涵巾取最小值,其表达式为”一0,’一万〔A(一,一关一〕dV一好多!一‘“ (l)式中“:为位移;户:为外力已知面上的单位表面力;关为体力;A(气)为应变比能。 A(勒)随材料的模型而异。对应变硬化材料(图a), E严_‘_‘_ A(乓r)一二丁二一气助+{刃(r)dr(2) 6(1一2刃~一“‘J一、-一、- 0式中E,,分别为弹性模量和泊松比;艺一硫瓜,r一掩不万,,,f,一,一音。魔。,,一,一,一音。*。!,;。f,为克罗内克(L.Kroneeker)记号,i=夕时a,一l,i笋少时民,一。,把式(2)代入式(1)便得到卡恰诺夫(几·M·Ka、aHoe)原理x的表达式。i厂:八 I’—几 I’一 ab 乞一乏(r)关系图 a一应变硬化材料;占~理想塑性材料 对于理想塑性材料(图b), 艺~ZGr(r
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条