1) reduced density
约化密度
2) Reduced density matrix
约化密度矩阵
1.
This approach provided a complete solution to the master equation of the reduced density matrix of the J C model in the non perturbation theory framework in which there are the gain and the dissipation.
将幺正时间演化算符方法推广应用到有耗散情形的二能级原子系统 ,将增益与耗散统一在非微扰框架内正确求解J C模型约化密度矩阵主方程 ,其结果对任意激光强度都适用。
2.
The decoherence characteristics of two-level atoms, which are put in a thermal reservoir and under the degenerate two-photon Jeynes-Cummings model including Stark shift, are studied by calculating the reduced density matrix elements of the interaction system.
针对存在Stark位移的Jaynes-Cummings模型,利用求解相互作用系统约化密度矩阵元的方法,研究热库中的二能级原子简并双光子过程的消相干特性。
3.
Then,the reduced density matrix and its square are obtained too.
适当调节磁场的大小,利用均匀磁场中q-形变谐振子两方向的波函数(rθ方向的基态和第三激发态,z方向的基态和第一激发态)构造了纠缠态,并用Schmidt分解法和约化密度矩阵法验证了所构造的态为纠缠态。
3) reduce density operator
约化密度算符
4) Atomic reduced density master equation
约化密度主方程
5) reduced density effect
约化密度效应
6) reduced spectral density mapping
约化谱密度映射
补充资料:非密度制约因素(见密度制约因素)
非密度制约因素(见密度制约因素)
l焦非密度制约因素见生态因素、密度制约后
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条