1) Tucker's duality equation
塔克对偶方程
2) dual equation
对偶方程
1.
The dual equations and analytical solutions of two-dimensional crack problems in piezoelectric ceramics;
压电陶瓷二维裂纹问题的对偶方程及其解析解
2.
New sufficient conditions for the non-existence of positive solution to a nonlinear difference equation with unbounded delay and to its dual equation are obtained, and some of the results in the literature are improved.
研究一类非线性无界时滞差分方程及其对偶方程,给出了方程不存在正解的充分条件,所得结论改进了有关的结果。
3.
By making Laplace and Fourier transformation as well as sine and cosine transformation to moving differential equations and various responses,the dual equation which is constructed from boundary conditions lastly was solved.
引入势函数,形成运动微分方程,对运动微分方程和各种响应进行Laplace变换及Fourier正弦、余弦变换,最后求解由边界条件形成的对偶方程———这种研究动态裂纹的方法已经被广泛使用并成为比较系统的方法· 以一种模型为例,对其推演过程进行了研究,最后发现:此方法在数学推演时,存在着不严密的问题,推演结果带有偶然性,不具可信性·
3) dual equations
对偶方程
1.
The correspondence principle and variational method were employed to introduce a Hamiltonian system method for dealing with the bending problem of viscoelastic cantilever-beams,so that fundamental eigenvectors of dual equations,i.
利用对应原理和变分法,提出一种求解粘弹性悬臂梁问题的哈密顿体系方法,得到对偶方程的基本解向量,即零本征向量和非零本征向量。
4) equation of dual type
对偶型方程
5) Kuhn-Tucker equations
库恩-塔克方程组
1.
The Newton-PGCG algorithm is proposed to solve the Kuhn-Tucker equations.
提出了牛顿方法与预优广义共轭梯度方法相结合的方法(简称为Newton-PGCG)求解库恩-塔克方程组。
6) dual integral equations
对偶积分方程
1.
By using the Fourier transform,the problem can be solved with a pair of dual integral equations in which the unknown variable is the jump of displacements across the crack surfaces.
首先利用付里叶变换,使问题的求解转换成对一对变量为裂纹面上位移差的对偶积分方程的求解。
2.
With Fourier transform,the problem is evolved as dual integral equations where the unknown variable is taken as the jump of the displacements across the cract surface.
利用傅立叶变换,使问题的求解转换为对一对以裂纹表面上的位移差为未知变量的对偶积分方程的求解。
3.
By using the Fourier transform,theproblem can be solved with the help of a pair of dual integral equations in which the unknown variable is thejump of the displacements across the crack surfaces.
利用 Fourier 变换,问题可以转化为对未知数是裂纹表面张开位移的一对对偶积分方程的求解,此对偶积分方程采用 Schmidt 方法求解。
补充资料:福克-普朗克方程
见统计物理学。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条