1) randomly Hemiltonian graph
随机哈密顿图
2) Hamiltonian graph
哈密顿图
1.
This paper discusses the application of degree in other aspects of graph theory,such as cycle,Hamiltonian graph and matching on the base of reference.
在已有文献的基础上,讨论度在图论其它方面,诸如在圈、哈密顿图、匹配中的应用。
2.
In this paper,we will research the domination number of hamiltonian graphs and prove that for a hamiltonian graph G of order n with minimun degree at least five,the domination munber of is at most 5n/14.
本文对哈密顿图的控制数进行了研究,证明了命题:如果n阶图G是一个最小度为5的哈密顿图,则图G的控制数就不大于5n/14。
3.
Then Tournament D *=(V,E) is Hamiltonian graph.
证明了命题“竞赛图D =(V ,E) ,顶点的个数 V =n为奇数 ,对 v∈V ,d+(v) =d-(v) =n - 12 竞赛图是哈密顿图。
3) Hamilton Graph
哈密顿图
1.
One Sufficient Condition of Making D—Circle Graph Be a Hamilton Graph;
D—圈图成为哈密顿图的一个充分条件
2.
This paper mainly concerns the properties of Hamilton graph and some methods of judgment based on them.
本文探讨了哈密顿图的性质,并根据这些性质给出了若干种判定非哈密顿图的方法。
4) Hamiltonian
[英][,hæmil'təuniən] [美][,hæmḷ'tonɪən]
哈密顿图
1.
In 1998 a conjecture was suggested for the conference of Graph theory,combinatorics,and applications at Kalamazooin USA as follows:let G be a 3-connected K1,3-free graph of order n,if |N(x)∪N(y)|≥(2n-6)/3 for each pair of nonadjacent vertices x,y,then G is Hamiltonian.
1988年在美国Kalamazoo召开的"第六届国际图论、组合及其应用会议"上提出无爪图猜想:若3连通n≥3阶K1,3-free图G的不相邻的任两点x、y均有|N(x)∪(N(y)|≥(2n-6)/3,则G是哈密顿图。
2.
If G is Hamiltonian,then its line graph L(G) is pancyclic graph.
若G是哈密顿图,则其线图L(G)是泛圈图。
3.
These results imply several known theorems on the topic of hamiltonian graph, hamilton connected graph.
利用邻域交的概念,应用插点的方法,给出了一类与图的哈密顿性有关的序列,推广了关于哈密顿图、哈密顿连通图、以及图的支配路和图的一些已知的定理。
5) Hamilton graph
哈密尔顿图
1.
By using Hamilton graph,the problem of wagons placing-in and taking-out on branch-shaped sidings can be turned into searching Hamilton loop of minimum power.
运用图论中的哈密尔顿图,可以将树枝型专用线取送车问题,转化为求哈密尔顿图中权值最小的哈密尔顿回路问题。
2.
he concept of the degree of a face is introduced, associated theoreme as necessary conditions of Hamilton graph are presented, and a method to search for Hamilton circuits in a given connected planer graphabsorbing transformation of graph-is Put forward.
本文引进面的度数这一概念,给出作为哈密尔顿图的必要条件的伴随定理,提出一个在给定的连通平面图上找哈密尔顿回路的方法──图的吸收变换法。
3.
By adopting Hamilton Graph, the paper builds up a mathematical model for wagons’ placing-in and taking-out and goods loading & unloading operation.
运用图论中的哈密尔顿图,建立取送及装卸作业的数学模型,从整体取送车作业过程来分析,将树枝型专用线的取送车问题,转化为寻求哈密尔顿图回路机车作业时间最短方案的最优问题。
6) 1-hamiltonian
1-哈密顿图
1.
If a connected graph G is 1-hamiltonian(contains a 2factor with k(k2) cycles、is vertexpancyclic ordered、contains two edge-disjoint hamiltonian cycles、is panconnected),then L(G) also is1-hamiltonian(contains a 2-factor with k(k2) cycles、is vertexpancyclic ordered、contains two edge-disjoint hamiltonian cycles、is panconnected).
证明了若连通图G是1-哈密顿图(有含k(k 2)个圈的2-因子、点泛圈可序的、有两个边不交的哈密顿圈、泛连通的),那么L(G)也是1-哈密顿图(有含k(k 2)个圈的2-因子、点泛圈可序的、有两个边不交的哈密顿圈、泛连通的)。
补充资料:哈密顿图
哈密顿图
h哈密顿通路(回路)与哈密顿图 通过图g的每个结点一次,且仅一次的通路(回路),就是哈密顿通路(回路). 存在哈密顿回路的图就是哈密顿图.
判断哈密顿图是较为困难的.
h哈密顿图的充分条件和必要条件
(1) 在无向简单图g=<v,e>中½v½³3,任意不同结点 ,则g是哈密顿图.(充分条件,定理4)
(2) 有向完全图d=<v,e>, 若 ,则图d是哈密顿图. (充分条件,定理5推论)
(3) 设无向图g=<v,e>,"v1ìv,则p(g-v1)£½v1½(必要条件,定理3)
若此条件不满足,即$v1ìv,使得p(g-v!)>½v1½,则g一定不是哈密顿图(非哈密顿图的充分条件).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条