1) Hamilton-connected graphs
哈密尔顿连通图
4) strongly Hamiltonian-connected
强哈密尔顿连通
1.
Using the coutraction technique,we gencralize some results on Hamiltonian digraphs,and present some sufficient conditions involving minimum semi-degree,minimum degree sum and the number of arcs of arcs to force a digraph to be strongly Hamiltonian-connected.
利用收缩技术,推广了有向图理论中哈密尔顿性问题的几个结论,给出了有向图是强哈密尔顿连通的最小半度、度和、最少边数等条件。
5) Hamilton connected graphs
哈密尔连通图
6) Hamilton graph
哈密尔顿图
1.
By using Hamilton graph,the problem of wagons placing-in and taking-out on branch-shaped sidings can be turned into searching Hamilton loop of minimum power.
运用图论中的哈密尔顿图,可以将树枝型专用线取送车问题,转化为求哈密尔顿图中权值最小的哈密尔顿回路问题。
2.
he concept of the degree of a face is introduced, associated theoreme as necessary conditions of Hamilton graph are presented, and a method to search for Hamilton circuits in a given connected planer graphabsorbing transformation of graph-is Put forward.
本文引进面的度数这一概念,给出作为哈密尔顿图的必要条件的伴随定理,提出一个在给定的连通平面图上找哈密尔顿回路的方法──图的吸收变换法。
3.
By adopting Hamilton Graph, the paper builds up a mathematical model for wagons’ placing-in and taking-out and goods loading & unloading operation.
运用图论中的哈密尔顿图,建立取送及装卸作业的数学模型,从整体取送车作业过程来分析,将树枝型专用线的取送车问题,转化为寻求哈密尔顿图回路机车作业时间最短方案的最优问题。
补充资料:哈密顿图
哈密顿图
h哈密顿通路(回路)与哈密顿图 通过图g的每个结点一次,且仅一次的通路(回路),就是哈密顿通路(回路). 存在哈密顿回路的图就是哈密顿图.
判断哈密顿图是较为困难的.
h哈密顿图的充分条件和必要条件
(1) 在无向简单图g=<v,e>中½v½³3,任意不同结点 ,则g是哈密顿图.(充分条件,定理4)
(2) 有向完全图d=<v,e>, 若 ,则图d是哈密顿图. (充分条件,定理5推论)
(3) 设无向图g=<v,e>,"v1ìv,则p(g-v1)£½v1½(必要条件,定理3)
若此条件不满足,即$v1ìv,使得p(g-v!)>½v1½,则g一定不是哈密顿图(非哈密顿图的充分条件).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条