1) prime index
素数下标
2) array element subscript
数组元素下标
3) array subscript
数组下标
4) index array
下标数据
5) subscripted variable
下标变数
6) prime index
素数标引
补充资料:Euclid素数定理
Euclid素数定理
Euclidean prime mnber theorem
add素数定理降汕业此叨帅说.即b叮均曰,曰n;E。二-J助a reopeMa 0 upoe:。x,。e几axl 素数的集合是无限的(EucM的《几何原本》(E】。比七nts),卷狱,命题20).qe6曰山e。定理(关于素数的)( Cheb够hev thooren‘(onp~nUmbe比))和素数分布(distribution ofp~n切旧bers)的渐近律给出关于自然数序列中素数集合的更确切的信息. C.M.Bopo”附撰【补注】Euclid素数定理的证明是很简单的.假设只存在有限个素数乃,…,几.考虑数N=Pl…八+1.因为N>1,且已假设素数是有限的,所以N必定可被某个素数,譬如说只整除;即几可以整除N=pl…n…几刊,因此召可以整除1.这个矛盾证明,必须存在无限多个素数.张鸿林译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条