说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 食微生物毒
1)  microbivorous
食微生物毒
2)  food microbiology
食品微生物
1.
Application of DGGE technique in the food microbiology;
变性梯度凝胶电泳(DGGE)技术在食品微生物研究中的应用
2.
To Prefect Food Microbiology Experimental Teaching,to Train the Applied Talents
论食品微生物学实验教学体系的改革与完善
3.
Recently, this technique was introduced into and applied in food microbiology.
多聚酶链式反应结合变性梯度凝胶电泳指纹分析技术(PCR-DGGE)常用于分析自然环境中微生物群体的遗传多样性,具有可重复和容易操作且不需要进行微生物培养等特点,近年来该技术开始作为食品微生物的研究手段。
3)  food microorganism
食品微生物
1.
Non-thermal biological effect of microwave on food microorganism and technology of microwave sterilization;
微波对食品微生物的非热生物效应与微波杀菌技术
2.
The Development and the Research of Fast Detection Technique of Food Microorganism
食品微生物快速检测技术的研究进展
3.
The basic principles of enzyme linked immunosorbent assay (ELISA),immunochromatography(IC),immunofluorescence technique (IFT),enzyme-linked fluorescent immunoassay (ELFIA),immunoblotting and latex agglutination test (LAT) were introduced,and the application of these six immunological detection techniques on food microorganism were reviewed.
介绍了酶免疫测定技术、免疫层析技术、免疫荧光技术、酶联荧光免疫分析技术、免疫印迹技术、乳胶凝集试验的基本原理,并综述了这6种免疫学技术在食品微生物检测中应用。
4)  food microbe
食品微生物
1.
It was briefly reviewed about recent progresses on testing of food microbes by genechip based procedures.
本文扼要综述了近年来基因芯片技术在食品微生物检测中的研究进展,着重讨论基因芯片检测微生物的基本原理与步骤, 样品的采集制备和分离纯化食品微生物DNA的方法和要求,基因芯片技术检测食品常见致病菌及其在食品微生物研究中的应用,该技术在食品微生物中的应用现状和前景。
2.
Artificial Neural Networks(ANN) have been recognized as powerful tools for the case of the non-linear system, particularly for formulation optimization, process simulation and prediction of food microbe fermentation.
人工神经网络对非线性系统具有很强的处理能力,适合对食品微生物发酵进行配方优化、过程仿真与预测。
5)  microphagous
食微生物的
6)  Edible microorganismus
食用微生物
补充资料:氨基酸发酵微生物
      发酵生产氨基酸的微生物。1950年发现了大肠肝菌能分泌少量的丙氨酸、谷氨酸、天冬氨酸和苯丙氨酸,以及加入过量的铵盐可增加氨基酸积累量的现象。1957年,日本的木下祝郎等采用谷氨酸棒状杆菌进行L-谷氨酸发酵取得成功。不久,利用该菌的突变株又发酵生产了L-赖氨酸、L-鸟氨酸和L-缬氨酸等。中国于 1958年开始研究L-谷氨酸,随后分别报道了酮戊二酸短杆菌2990-6的L-谷氨酸发酵及其代谢的研究结果。1965年把北京棒状杆菌ASI299和钝齿棒状杆菌ASI542先后应用于L-谷氨酸发酵的工业生产,接着在选育其他氨基酸的优良菌株方面也取得一定成果,逐渐形成了中国的氨基酸发酵工业。
  
  近20种氨基酸均可用微生物发酵法生产。但是,微生物的细胞具有代谢自动调节系统,使氨基酸不能过量积累。如果要在培养基中大量积累氨基酸,就必须解除或突破微生物的代谢调节机制。氨基酸发酵就是人为控制这种机制所取得的重大成果。从自然界中分离筛选野生菌株,控制其胞膜通透性,使之有利于分泌大量L-谷氨酸,这也是获得L-谷氨酸发酵微生物优良菌株的重要途径。其次通过对产L-谷氨酸菌株的人工诱变,选育产氨基酸的各种突变株,是获得其他氨基酸发酵微生物优良菌株的有效方法。
  
  L-谷氨酸发酵微生物的优良菌株多在棒状杆菌属、微杆菌属、节杆菌属和短杆菌属中。具有下述共同特性:①细胞形态为短杆至棒状;②无鞭毛,不运动;③不形成芽孢;④革兰氏阳性;⑤要求生物素(利用石蜡为碳源的要求硫胺素);⑥在通气培养条件下产生大量L-谷氨酸。此外,其他细菌、放线菌和真菌中的一些属种也有产L-谷氨酸的菌株,但产酸率较低。
  
  产其他氨基酸的微生物,主要是对上述产L-谷氨酸的优良菌株进行人工诱变后选育出的各种突变株:①营养缺陷型突变株。利用营养缺陷型突变株发酵生产氨基酸的关键是限制某种反馈抑制物或阻遏物的量,以解除代谢调节机制而有利于代谢中间体或最终产物的过量积累。因此,不同氨基酸缺陷型生长在含有限量的所要求氨基酸的培养基中,往往能产生和积累大量某种氨基酸。例如,L-赖氨酸的生产菌株多采用高丝氨酸缺陷型突变株,而精氨酸缺陷型突变株往往产生鸟氨酸或瓜氨酸等;②调节突变株。采用调节突变株发酵生产氨基酸是成功的工艺之一,因为这类突变株一旦对氨基酸结构类似物具备了抗性之后,其正常代谢调节机制即被解除,因而能够积累大量的相应的氨基酸;③营养缺陷型与抗反馈调节多重突变株。采用这类多重突变株对提高某些氨基酸的发酵产率有明显的效果。例如,生产L-精氨酸、L-色氨酸、L-苯丙氨酸、L-酪氨酸、L-白氨酸和L-苏氨酸等就常采用多重突变株。
  
  此外,还可利用添加前体物和酶转化法生产氨基酸。特别是遗传工程技术的应用,在获得或改造氨基酸发酵微生物高产菌株方面,出现了可喜的进展。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条