1) global reference
全局引用
2) global attraction
全局吸引
1.
We demonstrate that the disease-free periodic solution is a global attraction if the reproductive number of infective is less than one.
证明了当传染病再生数小于1时,无病周期解是全局吸引的。
2.
By using comparative theorem of impulsive differential equation and delay differential equation basic theory,sufficient conditions which guarantee the global attraction of pest-extinction periodic solution and permanence of the system are obtained.
研究了与害虫管理相关的一类捕食者具脉冲扰动与Ivlev功能性反应的时滞捕食-食饵模型;运用脉冲微分方程的比较定理及时滞泛函微分方程的基本理论,证明了该系统在一定条件下害虫灭绝周期解是全局吸引的,同时也证明了系统持久的充分条件和所有解的一致完全有界性。
3) globally attractive
全局吸引
1.
In this paper,we consider the following difference equation x(n+1)=α(n)x(n)1+β(n)x(n) and obtained the sufficient condition for the existence of globally attractive positive asymptotic almost periodic solutions.
得到了下列离散系统x(n+1)=α(n)x(n)1+β(n)x(n)全局吸引的正的渐近概周期解的存在性的充分条件。
2.
It was proved that the system can have a unique positive globally attractive almost periodic solution.
在本文中,我们考虑具时滞的扩散概周期捕食系统,其中被捕食者可在两个缀块间迁移,而捕食者被限制在其中一个缀块内,并证明了该系统存在唯一的全局吸引的正概周期解。
4) global attractiveness
全局吸引
1.
The unique and global attractiveness of the periodic solution are then proved by employing.
文中还利用Dini导数证明了该模型的周期解是唯一的,且是全局吸引的。
2.
Uniform persistence and global attractiveness of this system are obtained.
研究缀块环境下两种群时滞扩散的Lotka-Volterra竞争系统,获得了系统的一致持久性和正解的全局吸引性的条
3.
In this paper,theorems of arymptotic behavior and global attractiveness of second arder nonlinear delay differential equation are estabisbed.
本文建立了二阶非线性时滞微分方程解的渐近性结果及全局吸引定理,改进和推广了二阶线性方程和一阶非线性方程的已知定理。
5) global attractivity
全局吸引
1.
Note on the global attractivity of a competitive system with infinite delay and feedback controls;
具无穷时滞反馈控制竞争模型的全局吸引性的注记
2.
Permanence and global attractivity in nonlinear difference equation;
一类非线性差分方程的持续生存与全局吸引
3.
Permanence and global attractivity of a semi-ratio-dependent predator-prey system with stage structure for prey;
阶段结构半比率型捕食系统的持久性和全局吸引性
6) global stability
全局吸引
1.
Sufficient conditions which ensure the permanence and global stability of system (1) are obtained by inequality,fixed point theorem and Lyapunov function.
利用不等式,不动点定理与Lya-punov函数,得到了系统(1)存在唯一全局吸引的正周期解的容易验证的充分条件。
补充资料:引用误差
分子式:
CAS号:
性质:仪表误差的一种,指仪表的绝对误差与测量范围上限值、量程、或标尺长度之比。仪表的引用误差以百分数表示。
CAS号:
性质:仪表误差的一种,指仪表的绝对误差与测量范围上限值、量程、或标尺长度之比。仪表的引用误差以百分数表示。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条