1) singular distribution
奇异分布
2) singularity spectra distribution
奇异谱分布
3) nonsingular distribution
非奇异分布
4) anomalous neutron distribution
奇异中子分布
5) singular distribution function
奇异型分布函数
1.
The relation between singular distribution function and its Lebesgue-Stieltjes measure is discussed in this paper.
本文讨论了R_1奇异型分布函数与其所产生的Lebesguc-Stieltjes测度的关系,给出了分布函数F(x)为奇异型的一个等价条件。
6) Nonsingular involutive distribution
非奇异对合分布
补充资料:delaVallée-Poussin奇异积分
delaVallée-Poussin奇异积分
e la Vallee- Poussin singular integral
山hV叨触一P仪.菌n奇异积分【deh、7al应~P侧目n血-多面了加雌阳】;Ba月月e一flyeeeoac“Hry月,PHM.““Ter-pa月」 形式为 。‘、::、一李,萝理牛i、(x十:)cosZ·冬己。 乙兀L小一1)::戈的积分(亦见de h Vall倪一P侧对n求和法(de h vall‘e-Po哪insumrrntionmethod)).对于在(一的,田)上连续的、以2二为周期的函数f林),序列气(f;x)一致收敛于f(x)(【1」).如果在点x上 (父,(!)比今}一,(·,,则当。~的时,玖(f;x)~f(x),下列等式成立(12」): 。。、:,、一、(x、一工竺工主)、。「生1. 刀Ln」[补注]符号(Zm)!!表示Zm(2m一2)二2(m项),(2脚一1)!!二(2m一z)(Zm一3)二弓(m项),因此, (2n)!!二2,”(n!), (知一l)!!(Zn)!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条