1) trivial solution
平凡解(数)
2) nontrivial integer solution
非平凡整数解
1.
In this paper, the Diophantine equation x~3±10~3=Dy~2 is studied by elemantary meth-od, some sufficient conditions for which the equation x~3±10~3=Dy~2 has no nontrivial integer solutionare given out.
用初等方法研究了丢番图方程x3±103=Dy2,给出了它们无非平凡整数解的充分性条件。
2.
in this paper, we have studied the diophantine equation X3+153=Dy2 by the elements method, and give out their all the nontrivial integer solutions.
给出了丢番图方程X2±153=Dy2的全部非平凡整数解。
3.
The Diophantine Equation x 3±4 096=3Dy 2 is studied by the elemantary method,and some sufficient conditions are shown that the equation x 3±4 096=3Dy 2 have not nontrivial integer solutio
用初等方法研究丢番图方程x3±4096=3Dy2,并给出其无非平凡整数解的一些充分性条件。
3) nontrivial integral solution
非平凡整数解
1.
d is not prime of the from 6K+1 ,then when,38 (mod 40), the equation x ̄3±64=3Dy ̄2 have not nontrivial integral solution.
给出了方程x~3±64=3Dy~2无非平凡整数解的充分性条件。
4) semi-trivial solutions
半平凡解
1.
The sufficient conditions for the existence of the local bifurcations of two semi-trivial solutions(θr,0) and(0,θd) are proved,and stability of the local bifurcate solution from semi-trivial solution(θr,0) is obtained.
利用局部分歧理论及线性稳定理论,证明了两个半平凡解(rθ,0)和(0,θd)局部分歧解存在的充分条件,并且证明了半平凡解(rθ,0)产生的局部分歧解是无条件稳定的。
5) nontrivial solutions
非平凡解
1.
We obtained that for every λ>0 in the minimum problems Iλ and I∞λ,there exists α∈0,λ,such that both problems Iα and I∞α have nontrivial solutions.
讨论了一类拟线性椭圆型方程的CHOQUARD-PEKAR问题在无界区域中的非平凡解的存在性,对于极小问题Iλ和I∞λ,得到了对于每个λ>0,存在α∈(0,λ],使得Iα和I∞α可以达到。
2.
In this paper, a concentration-compactness lemma for the problem of quasilinear elliptic equations is given, and the existence of nontrivial solutions is discussed by use of this lemma.
给出了相应的拟线性方程的定解问题的集中列紧引理 ,利用这一结果得到了方程在无界区域中非平凡解的存在性。
3.
With the mountain pass lemma and the means of straightening the boundary,the existence of nontrivial solutions are obtained by verifing the functional J(u) corresponding to the equations satisfy the local(PS) conditions.
研究了一类含Sobolev-Hardy临界指数与Hardy项的椭圆方程,通过验证方程对应的泛函J(u)满足局部(PS)条件,运用山路引理与拉直边界的方法得到了这类方程非平凡解的存在性。
6) nontrivial solution
非平凡解
1.
Existence of nontrivial solution for an elliptic equation;
一类椭圆型方程的非平凡解的存在性
2.
Existence of nontrivial solutions for the p-Laplacian Problem on unbounded domain;
无界区域上p-Laplace问题的非平凡解的存在性
3.
On the nontrivial solutions and dead core problem for the equation Δu=c︱Du(X)︱~(p-1);
关于方程Δu=c︱Du︱~(p-1)的非平凡解及死核问题
补充资料:概率论与数理统计全程导学及习题全解
概率论与数理统计全程导学及习题全解(浙大第三版)
图书作者: 谢婧 主编
出版社: 中国时代经济出版社
isbn: 780221047x
出版时间: 2006-9-1
印刷时间: 1
开 本:
价 格(元): 14
本书是按照高等院校教材《概率论和数理统计》(第三版 浙江大学 盛骤等编)而编写的学习辅导与习题全解参考书。全书按教材章节进行编写,每章分为本章知识要点、典型例题讲解和教材课后习题全解三部分。并对教材书后的补充习题给出了全面的解答过程。本书可作为高等院校在校学生及自考学生学习《概率论与数理统计》课程的辅导教材、复习参考书以及考研强化指导书,并可作为教师的教学参考用书。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。